Laser Ablation Electrospray Ionization for Atmospheric Pressure Molecular Imaging Mass Spectrometry

  • Peter Nemes
  • Akos Vertes
Part of the Methods in Molecular Biology book series (MIMB, volume 656)


Laser ablation electrospray ionization (LAESI) is a novel method for the direct imaging of biological tissues by mass spectrometry. By performing ionization in the ambient environment, this technique enables in vivo studies with potential for single-cell analysis. A unique aspect of LAESI mass spectrometric imaging (MSI) is depth profiling that, in combination with lateral imaging, permits 3D molecular imaging for the first time under native conditions. With current lateral and depth resolutions of ∼100 and ∼40 μm, respectively, LAESI MSI helps to explore the molecular architecture of live tissues.

Key words

Mass spectrometry imaging ambient direct analysis depth profiling three-dimensional in vivo tissue imaging 


  1. 1.
    Cooks, R. G., Ouyang, Z., Takats, Z., Wiseman, J. M. (2006) Ambient mass spectrometry. Science, 311, 1566–1570.PubMedCrossRefGoogle Scholar
  2. 2.
    Takats, Z., Wiseman, J. M., Gologan, B., Cooks, R. G. (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science, 306, 471–473.PubMedCrossRefGoogle Scholar
  3. 3.
    Li, Y., Shrestha, B., Vertes, A. (2008) Atmospheric pressure infrared MALDI imaging mass spectrometry for plant metabolomics. Anal Chem, 80, 407–420.PubMedCrossRefGoogle Scholar
  4. 4.
    Nemes, P., Barton, A. A., Li, Y., Vertes, A. (2008) Ambient molecular imaging and depth profiling of live tissue by infrared laser ablation electrospray ionization mass spectrometry. Anal Chem, 80, 4575–4582.PubMedCrossRefGoogle Scholar
  5. 5.
    Shelley, J. T., Ray, S. J., Hieftje, G. M. (2008) Laser ablation coupled to a flowing atmospheric pressure afterglow for ambient mass spectral imaging. Anal Chem, 80, 8308–8313.PubMedCrossRefGoogle Scholar
  6. 6.
    Nemes, P., Vertes, A. (2007) Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal Chem, 79, 8098–8106.PubMedCrossRefGoogle Scholar
  7. 7.
    Vertes, A., Nemes, P., Shrestha, B., Barton, A. A., Chen, Z. Y., Li, Y. (2008) Molecular imaging by Mid-IR laser ablation mass spectrometry Appl Phys Mater Sci Process, 93, 885–891.CrossRefGoogle Scholar
  8. 8.
    Shrestha, B., Nemes, P., Nazarian, J., Hathout, Y., Hoffman, E., Vertes, A. (2010) Direct analysis of lipids and small metabolites in mouse brain tissue by AP IR-MALDI and reactive LAESI mass spectrometry. Analyst, 135, 751–758.Google Scholar
  9. 9.
    Jurchen, J. C., Rubakhin, S. S., Sweedler, J. V. (2005) MALDI-MS imaging of features smaller than the size of the laser beam. J Am Soc Mass Spectrom, 16, 1654–1659.PubMedCrossRefGoogle Scholar
  10. 10.
    Li, Y., Shrestha, B., Vertes, A. (2007) Atmospheric pressure molecular imaging by infrared MALDI mass spectrometry. Anal Chem, 79, 523–532.PubMedCrossRefGoogle Scholar
  11. 11.
    Nemes, P., Barton, A. A., Vertes, A. (2009) Three-dimensional imaging of metabolites in tissues under native conditions by laser ablation electrospray ionization mass spectrometry. Anal Chem, 81, 6668–6675.Google Scholar
  12. 12.
    Apitz, I., Vogel, A. (2005) Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin. Appl Phys Mater Sci Process, 81, 329–338.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Peter Nemes
    • 1
  • Akos Vertes
    • 1
  1. 1.Department of ChemistryW. M. Keck Institute for Proteomics Technology and Applications, George Washington UniversityWashingtonUSA

Personalised recommendations