A Mass Spectrometry Primer for Mass Spectrometry Imaging

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 656)

Abstract

Mass spectrometry imaging (MSI), a rapidly growing subfield of chemical imaging, employs mass spectrometry (MS) technologies to create single- and multi-dimensional localization maps for a variety of atoms and molecules. Complimentary to other imaging approaches, MSI provides high chemical specificity and broad analyte coverage. This powerful analytical toolset is capable of measuring the distribution of many classes of inorganics, metabolites, proteins, and pharmaceuticals in chemically and structurally complex biological specimens in vivo, in vitro, and in situ. The MSI approaches highlighted in this Methods in Molecular Biology volume provide flexibility of detection, characterization, and identification of multiple known and unknown analytes. The goal of this chapter is to introduce investigators who may be unfamiliar with MS to the basic principles of the mass spectrometric approaches as used in MSI. In addition to guidelines for choosing the most suitable MSI method for specific investigations, cross-references are provided to the chapters in this volume that describe the appropriate experimental protocols.

Key words

Mass spectrometry imaging mass spectrometer mass spectrum ion source mass analyzer detector 

References

  1. 1.
    Burlingame, A. L. (2005) Mass spectrometry: modified proteins and glycoconjugates, Methods in Enzymolology. Elsevier Academic Press, Amsterdam, Boston, MA.Google Scholar
  2. 2.
    Chance, M. (ed.) (2008) Mass Spectrometry Analysis for Protein–Protein Interactions and Dynamics. John Wiley & Sons, Hoboken, NJ.Google Scholar
  3. 3.
    Downard, K. (ed.) (2007) Mass Spectrometry of Protein Interactions. Wiley Interscience, Hoboken, NJ.Google Scholar
  4. 4.
    Lipton, M. S., Páya-Tolic, L. (2009) Mass Spectrometry of Proteins and Peptides: Methods and Protocols. Humana Press, Springer, distributor, New York, NY, London.Google Scholar
  5. 5.
    Matthiesen, R. (ed.) (2007) Mass Spectrometry Data Analysis in Proteomics. Humana Press, Totowa, NJ.Google Scholar
  6. 6.
    Murphy, R. C. (1993) Mass Spectrometry of Lipids. Plenum Press, New York, NY.Google Scholar
  7. 7.
    Sparkman, O. D. (2006) Mass Spec Desk Reference. 2nd ed. Global View Publishing, Pittsburgh, PA.Google Scholar
  8. 8.
    Wanner, K. T., Höfner, G. (eds.) (2007) Mass Spectrometry in Medicinal Chemistry: Applications in Drug Discovery. Wiley-VCH, John Wiley (distributor), Weinheim, Chichester.Google Scholar
  9. 9.
    McLafferty, F. W., Turecek, F. (1993) Interpretation of Mass Spectra. University Science Books, Mill Valley, CA.Google Scholar
  10. 10.
    Becker, J. S. (2007) Inorganic Mass Spectrometry: Principles and Applications. John Wiley & Sons, Chichester, Englandm Hoboken, NJ.Google Scholar
  11. 11.
    De Podesta, M. (2001) Understanding the Properties of Matter. Taylor & Francis, London, New York, NY.Google Scholar
  12. 12.
    Holscher, D., Shroff, R., Knop, K., Gottschaldt, M., Crecelius, A., Schneider, B., Heckel, D. G., Schubert, U. S., Svatos, A. (2009) Matrix-free UV-laser desorption/ionization (LDI) mass spectrometric imaging on the single-cell level: distribution of secondary metabolites of Arabidopsis thaliana and Hypericum species. Plant J, 60, 907–918.Google Scholar
  13. 13.
    Liu, Q., Guo, Z., He, L. (2007) Mass spectrometry imaging of small molecules using desorption/ionization on silicon. Anal Chem, 79, 3535–3541.PubMedCrossRefGoogle Scholar
  14. 14.
    Van Berkel, G. J., Kertesz, V., Koeplinger, K. A., Vavrek, M., Kong, A. N. (2008) Liquid microjunction surface sampling probe electrospray mass spectrometry for detection of drugs and metabolites in thin tissue sections. J Mass Spectrom, 43, 500–508.PubMedCrossRefGoogle Scholar
  15. 15.
    Northen, T. R., Yanes, O., Northen, M. T., Marrinucci, D., Uritboonthai, W., Apon, J., Golledge, S. L., Nordstrom, A., Siuzdak, G. (2007) Clathrate nanostructures for mass spectrometry. Nature, 449, 1033–1036.PubMedCrossRefGoogle Scholar
  16. 16.
    Yanes, O., Woo, H. K., Northen, T. R., Oppenheimer, S. R., Shriver, L., Apon, J., Estrada, M. N., Potchoiba, M. J., Steenwyk, R., Manchester, M., Siuzdak, G. (2009) Nanostructure initiator mass spectrometry: tissue imaging and direct biofluid analysis. Anal Chem, 81, 2969–2975.PubMedCrossRefGoogle Scholar
  17. 17.
    Willingham, D., Kucher, A., Winograd, N. (2008) Molecular depth profiling and imaging using cluster ion beams with femtosecond laser postionization. Appl Surf Sci, 255, 831–833.CrossRefGoogle Scholar
  18. 18.
    Sakamoto, T., Koizumi, M., Kawasaki, J., Yamaguchi, J. (2008) Development of a high lateral resolution TOF-SIMS apparatus for single particle analysis. Appl Surf Sci, 255, 1617–1620.CrossRefGoogle Scholar
  19. 19.
    Wucher, A., Cheng, J., Zheng, L., Winograd, N. (2009) Three-dimensional depth profiling of molecular structures. Anal Bioanal Chem, 393, 1835–1842.PubMedCrossRefGoogle Scholar
  20. 20.
    Tanaka, K. (2003) The origin of macromolecule ionization by laser irradiation (Nobel lecture). Angew Chem Int Ed Engl, 42, 3860–3870.PubMedCrossRefGoogle Scholar
  21. 21.
    Hillenkamp, F., Karas, M. (1990) Mass spectrometry of peptides and proteins by matrix-assisted ultraviolet laser desorption/ionization. Methods Enzymol, 193, 280–295.PubMedCrossRefGoogle Scholar
  22. 22.
    Fenn, J. (2002) Electrospray ionization mass spectrometry: how it all began. J Biomol Tech, 13, 101–118.PubMedGoogle Scholar
  23. 23.
    Cornett, D. S., Reyzer, M. L., Chaurand, P., Caprioli, R. M. (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods, 4, 828–833.PubMedCrossRefGoogle Scholar
  24. 24.
    Kaletas, B. K., van der Wiel, I. M., Stauber, J., Guzel, C., Kros, J. M., Luider, T. M., Heeren, R. M. (2009) Sample preparation issues for tissue imaging by imaging MS. Proteomics, 9, 2622–2633.PubMedCrossRefGoogle Scholar
  25. 25.
    Seetharaman, V., Royston, G. (2007) Quantitative detection of metabolites using matrix-assisted laser desorption/ionization mass spectrometry with 9-aminoacridine as the matrix. Rapid Commun Mass Spectrom, 21, 2072–2078.CrossRefGoogle Scholar
  26. 26.
    Rachal, L. V.-S., David, M. H. (2002) 9-Aminoacridine as a matrix for negative mode matrix-assisted laser desorption/ionization. Rapid Commun Mass Spectrom, 16, 1575–1581.CrossRefGoogle Scholar
  27. 27.
    Edwards, J. L., Kennedy, R. T. (2005) Metabolomic analysis of eukaryotic tissue and prokaryotes using negative mode MALDI time-of-flight mass spectrometry. Anal Chem, 77, 2201–2209.PubMedCrossRefGoogle Scholar
  28. 28.
    Liu, Y., Sun, X., Guo, B. (2003) Matrix-assisted laser desorption/ionization time-of-flight analysis of low-concentration oligonucleotides and mini-sequencing products. Rapid Commun Mass Spectrom, 17, 2354–2360.PubMedCrossRefGoogle Scholar
  29. 29.
    Romanova, E. V., Rubakhin, S. S., Sweedler, J. V. (2008) One-step sampling, extraction, and storage protocol for peptidomics using dihydroxybenzoic acid. Anal Chem, 80, 3379–3386.PubMedCrossRefGoogle Scholar
  30. 30.
    Takats, Z., Wiseman, J. M., Gologan, B., Cooks, R. G. (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science, 306, 471–473.PubMedCrossRefGoogle Scholar
  31. 31.
    Manicke, N. E., Wiseman, J. M., Ifa, D. R., Cooks, R. G. (2008) Desorption electrospray ionization (DESI) mass spectrometry and tandem mass spectrometry (MS/MS) of phospholipids and sphingolipids: ionization, adduct formation, and fragmentation. J Am Soc Mass Spectrom, 19, 531–543.PubMedCrossRefGoogle Scholar
  32. 32.
    Wiseman, J. M., Ifa, D. R., Venter, A., Cooks, R. G. (2008) Ambient molecular imaging by desorption electrospray ionization mass spectrometry. Nat Protoc, 3, 517–524.PubMedCrossRefGoogle Scholar
  33. 33.
    Lundstrom, S. L., D'Alexandri, F. L., Nithipatikom, K., Haeggstrom, J. Z., Wheelock, A. M., Wheelock, C. E. (2009) HPLC/MS/MS-based approaches for detection and quantification of eicosanoids. Methods Mol Biol, 579, 161–187.PubMedCrossRefGoogle Scholar
  34. 34.
    Houjou, T., Yamatani, K., Nakanishi, H., Imagawa, M., Shimizu, T., Taguchi, R. (2004) Rapid and selective identification of molecular species in phosphatidylcholine and sphingomyelin by conditional neutral loss scanning and MS3. Rapid Commun Mass Spectrom, 18, 3123–3130.PubMedCrossRefGoogle Scholar
  35. 35.
    Iavarone, A. T., Jurchen, J. C., Williams, E. R. (2001) Supercharged protein and peptide ions formed by electrospray ionization. Anal Chem, 73, 1455–1460.PubMedCrossRefGoogle Scholar
  36. 36.
    Shi, S. D., Hendrickson, C. L., Marshall, A. G. (1998) Counting individual sulfur atoms in a protein by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry: experimental resolution of isotopic fine structure in proteins. Proc Natl Acad Sci U S A, 95, 11532–11537.PubMedCrossRefGoogle Scholar
  37. 37.
    Shi, S. D. H., Drader, J. J., Hendrickson, C. L., Marshall, A. G. (1999) Fourier transform ion cyclotron resonance mass spectrometry in a high homogeneity 25 tesla resistive magnet. J Am Soc Mass Spectrom, 10, 265–268.CrossRefGoogle Scholar
  38. 38.
    Schaub, T. M., Hendrickson, C. L., Horning, S., Quinn, J. P., Senko, M. W., Marshall, A. G. (2008) High-performance mass spectrometry: Fourier transform ion cyclotron resonance at 14.5 tesla. Anal Chem, 80, 3985–3990.PubMedCrossRefGoogle Scholar
  39. 39.
    Makarov, A., Denisov, E., Kholomeev, A., Balschun, W., Lange, O., Strupat, K., Horning, S. (2006) Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Anal Chem, 78, 2113–2120.PubMedCrossRefGoogle Scholar
  40. 40.
    Jardin-Mathe, O., Bonnel, D., Franck, J., Wisztorski, M., Macagno, E., Fournier, I., Salzet, M. (2008) MITICS (MALDI Imaging Team Imaging Computing System): a new open source mass spectrometry imaging software. J Proteomics, 71, 332–345.PubMedCrossRefGoogle Scholar
  41. 41.
    Broersen, A., van Liere, R., Altelaar, A. F., Heeren, R. M., McDonnell, L. A. (2008) Automated, feature-based image alignment for high-resolution imaging mass spectrometry of large biological samples. J Am Soc Mass Spectrom, 19, 823–832.PubMedCrossRefGoogle Scholar
  42. 42.
    Hjerno, K., Hojrup, P. (2007) Calibration of matrix-assisted laser desorption/ionization time-of-flight peptide mass fingerprinting spectra. Methods Mol Biol, 367, 49–60.PubMedGoogle Scholar
  43. 43.
    Luo, Q., Nieves, E., Kzhyshkowska, J., Angeletti, R. H. (2006) Endogenous transforming growth factor-beta receptor-mediated Smad signaling complexes analyzed by mass spectrometry. Mol Cell Proteomics, 5, 1245–1260.PubMedCrossRefGoogle Scholar
  44. 44.
    Wolski, W. E., Farrow, M., Emde, A. K., Lehrach, H., Lalowski, M., Reinert, K. (2006) Analytical model of peptide mass cluster centres with applications. Proteome Sci, 4, 18.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Chemistry and Beckman InstituteUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations