Plant Secondary Metabolism Engineering pp 77-93

Part of the Methods in Molecular Biology book series (MIMB, volume 643) | Cite as

Modulation of Carotenoid Accumulation in Transgenic Potato by Inducing Chromoplast Formation with Enhanced Sink Strength

  • Joyce Van Eck
  • Xiangjun Zhou
  • Shan Lu
  • Li Li
Protocol

Abstract

An increasing interest in carotenoids as nutritional sources of provitamin A and health-promoting compounds has prompted a significant effort in metabolic engineering of carotenoid content and composition in food crops. The strategy commonly used in plants is to increase the biosynthetic capacity by altering the carotenogenic enzyme activities. The recent isolation of the Or gene from a cauliflower orange mutant has brought a new endeavor for carotenoid enhancement by increasing the sink strength to sequester and store the synthesized carotenoids. Potato as one of the major staple crops usually accumulates low levels of carotenoids. In this chapter, we describe a detailed protocol for metabolic engineering of carotenoids in potato plants with the Or gene and the analysis of the Or transformants.

Key words

Cauliflower Or gene carotenoids chromoplasts transgenic potato sink strength 

References

  1. 1.
    Fraser, P. D., and Bramley, P. M. (2004) The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 43, 228–265.PubMedCrossRefGoogle Scholar
  2. 2.
    Al-Babili, S., and Beyer, P. (2005) Golden Rice – five years on the road – five years to go? Trends Plant Sci. 10, 565–573.PubMedCrossRefGoogle Scholar
  3. 3.
    Taylor, M., and Ramsay, G. (2005) Carotenoid biosynthesis in plant storage organs: recent advances and prospects for improving plant food quality. Physiol. Plant. 124, 143–151.CrossRefGoogle Scholar
  4. 4.
    Giuliano, G., Tavazza, R., Diretto, G., Beyer, P., and Taylor, M. A. (2008) Metabolic engineering of carotenoid biosynthesis in plants. Trends Biotechnol. 26, 139–145.PubMedCrossRefGoogle Scholar
  5. 5.
    Lu, S., and Li, L. (2008) Carotenoid metabolism: biosynthesis, regulation, and beyond. J. Integr. Plant Biol. 50, 778–785.PubMedCrossRefGoogle Scholar
  6. 6.
    Paine, J. A., Shipton, C. A., Chaggar, S., Howells, R. M., Kennedy, M. J., Vernon, G., Wright, S. Y., Hinchliffe, E., Adams, J. L., Silverstone, A. L., and Drake, R. (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat. Biotechnol. 23, 482–487.PubMedCrossRefGoogle Scholar
  7. 7.
    Crisp, P., Walkey, D. G. A., Bellman, E., and Roberts, E. (1975) A mutation affecting curd colour in cauliflower (Brassica oleracea L. var. botrytis DC). Euphytica 24, 173–176.CrossRefGoogle Scholar
  8. 8.
    Dickson, M. H., Lee, C. Y., and Blamble, A. E. (1988) Orange-curd high carotene cauliflower inbreds, NY 156, NY 163, and NY 165. HortScience 23, 778–779.Google Scholar
  9. 9.
    Li, L., Paolillo, D. J., Parthasarathy, M. V., DiMuzio, E. M., and Garvin, D. F. (2001) A novel gene mutation that confers abnormal patterns of beta-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). Plant J. 26, 59–67.PubMedCrossRefGoogle Scholar
  10. 10.
    Lu, S., Van Eck, J., Zhou, X., Lopez, A. B., O’Halloran, D. M., Cosman, K. M., Conlin, B. J., Paolillo, D. J., Garvin, D. F., Vrebalov, J., Kochian, L. V., Kupper, H., Earle, E. D., Cao, J., and Li, L. (2006) The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of β-carotene accumulation. Plant Cell 18, 3594–3605.PubMedCrossRefGoogle Scholar
  11. 11.
    Lopez, A. B., Van Eck, J., Conlin, B. J., Paolillo, D. J., O’Neill, J., and Li, L. (2008) Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. J. Exp. Bot. 59, 213–223.PubMedCrossRefGoogle Scholar
  12. 12.
    Li, L., and Van Eck, J. (2007) Metabolic engineering of carotenoid accumulation by creating a metabolic sink. Transgenic Res. 16, 581–585.PubMedCrossRefGoogle Scholar
  13. 13.
    Dellaporta S. L., Wood, J., and Hicks, J. B. (1983) A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1, 19–21.CrossRefGoogle Scholar
  14. 14.
    Moore, S., Payton, P., Wright, M., Tanksley, S., and Giovannoni, J. (2005) Utilization of tomato microarrays for comparative gene expression analysis in the Solanaceae. J. Exp. Bot. 56, 2885–2895.PubMedCrossRefGoogle Scholar
  15. 15.
    Lyi, S. M., Zhou, X., Kochian, L. V., and Li, L. (2007) Biochemical and molecular characterization of the homocysteine S-methyltransferase from broccoli (Brassica oleracea var. italica). Phytochemistry 68, 1112–1119.PubMedCrossRefGoogle Scholar
  16. 16.
    Liu, S. J., Wei, Z. M., and Huang, J. Q. (2008) The effect of co-cultivation and selection parameters on Agrobacterium-mediated transformation of Chinese soybean varieties. Plant Cell Rep. 27, 489–498.PubMedCrossRefGoogle Scholar
  17. 17.
    Fullner, K. J., and Nester, E. W. (1996) Temperature affects the T-DNA transfer machinery of Agrobacterium tumefaciens. J. Bacteriol. 178, 1498–1504.PubMedGoogle Scholar
  18. 18.
    Kumar, G. N., Lyer, S., and Knowles, N. R. (2007) Extraction of RNA from fresh, frozen, and lyophilized tuber and root tissues. J. Agric. Food Chem. 55, 1674–1678.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Joyce Van Eck
    • 1
  • Xiangjun Zhou
    • 2
  • Shan Lu
    • 3
  • Li Li
    • 4
    • 5
  1. 1.Thompson Institute for Plant ResearchCornell UniversityIthacaUSA
  2. 2.US Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Department of Plant Breeding and GeneticsCornell UniversityIthacaUSA
  3. 3.State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
  4. 4.US Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and HealthCornell UniversityIthacaUSA
  5. 5.Department of Plant Breeding and GeneticsCornell UniversityIthacaUSA

Personalised recommendations