Surface Patterning for Generating Defined Nanoscale Matrices

Part of the Methods in Molecular Biology book series (MIMB, volume 660)


While stem cells in culture have been predominately controlled through the addition of soluble factors to the media, the impact of the extracellular matrix on stem cell renewal and differentiation has recently come to the forefront. In vivo, cells adhere and respond to cues that are on the nanoscale, thus the presentation of extracellular matrix components on this scale is critical to mimicking the in vivo environment. We have developed a highly flexible nanopatterning technique, employing protein and peptide reactive polymers and electron beam lithography, which can be utilized for studying matrix effects on stem cell renewal and differentiation.

Key words

Extracellular matrix Patterning Nanotechnology Stem cells Differentiation 



The authors would like to thank Eric Schopf and Kevin Chung in helping to develop these techniques. This work was supported by the NIH NIBIB (R21 EB 005838, HDM), an NIH NHLBI Postodoctoral Fellowship (5F32HL082138-02, KLC), and the NIH Director’s New Innovator Award Program, part of the NIH Roadmap for Medical Research, through grant number 1-DP2-OD004309-01 (KLC).


  1. 1.
    Glukhova, M. A., and Thiery, J. P. (1993) Fibronectin and integrins in development, Semin Cancer Biol 4, 241–249.PubMedGoogle Scholar
  2. 2.
    Czyz, J., and Wobus, A. (2001) Embryonic stem cell differentiation: the role of extracellular factors, Differentiation 68, 167–174.PubMedCrossRefGoogle Scholar
  3. 3.
    Holly, S. P., Larson, M. K., and Parise, L. V. (2000) Multiple roles of integrins in cell motility, Exp Cell Res 261, 69–74.PubMedCrossRefGoogle Scholar
  4. 4.
    Nur, E. K. A., Ahmed, I., Kamal, J., Schindler, M., and Meiners, S. (2006) Three-dimensional nanofibrillar surfaces promote self-renewal in mouse embryonic stem cells, Stem Cells 24, 426–433.CrossRefGoogle Scholar
  5. 5.
    Gerecht, S., Burdick, J. A., Ferreira, L. S., Townsend, S. A., Langer, R., and Vunjak-Novakovic, G. (2007) Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells, Proc Natl Acad Sci U S A 104, 11298–11303.PubMedCrossRefGoogle Scholar
  6. 6.
    Gerecht-Nir, S., Cohen, S., Ziskind, A., and Itskovitz-Eldor, J. (2004) Three-dimensional porous alginate scaffolds provide a conducive environment for generation of well-vascularized embryoid bodies from human embryonic stem cells, Biotechnol Bioeng 88, 313–320.PubMedCrossRefGoogle Scholar
  7. 7.
    Flaim, C. J., Chien, S., and Bhatia, S. N. (2005) An extracellular matrix microarray for probing cellular differentiation, Nat Methods 2, 119–125.CrossRefGoogle Scholar
  8. 8.
    Hwang, N. S., Varghese, S., Zhang, Z., and Elisseeff, J. (2006) Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-glycine-aspartate-modified hydrogels, Tissue Eng 12, 2695–2706.PubMedCrossRefGoogle Scholar
  9. 9.
    Goetz, A. K., Scheffler, B., Chen, H. X., Wang, S., Suslov, O., Xiang, H., Brustle, O., Roper, S. N., and Steindler, D. A. (2006) Temporally restricted substrate interactions direct fate and specification of neural precursors derived from embryonic stem cells, Proc Natl Acad Sci U S A 103, 11063–11068.PubMedCrossRefGoogle Scholar
  10. 10.
    Chen, S. S., Revoltella, R. P., Zimmerberg, J., and Margolis, L. (2006) Differentiation of rhesus monkey embryonic stem cells in three-dimensional collagen matrix, Methods Mol Biol 330, 431–443.Google Scholar
  11. 11.
    Garreta, E., Genove, E., Borros, S., and Semino, C. E. (2006) Osteogenic differentiation of mouse embryonic stem cells and mouse embryonic fibroblasts in a three-dimensional self-assembling peptide scaffold, Tissue Eng 12, 2215–2227.PubMedCrossRefGoogle Scholar
  12. 12.
    Chen, S. S., Fitzgerald, W., Zimmerberg, J., Kleinman, H. K., and Margolis, L. (2007) Cell-cell and cell-extracellular matrix interactions regulate embryonic stem cell differentiation, Stem Cells 25, 553–561.PubMedCrossRefGoogle Scholar
  13. 13.
    Khademhosseini, A., Langer, R., Borenstein, J., and Vacanti, J. P. (2006) Microscale technologies for tissue engineering and biology, Proc Natl Acad Sci U S A 103, 2480–2487.PubMedCrossRefGoogle Scholar
  14. 14.
    Lim, J. Y., and Donahue, H. J. (2007) Cell sensing and response to micro-and nano-structured surfaces produced by chemical and topographic patterning, Tissue Eng 13, 1879–1891.PubMedCrossRefGoogle Scholar
  15. 15.
    Hynes, R. O. (1992) Integrins – versatility, modulation, and signaling in cell-adhesion, Cell 69, 11–25.PubMedCrossRefGoogle Scholar
  16. 16.
    Burridge, K., Fath, K., Kelly, T., Nuckolls, G., and Turner, C. (1988) Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton, Annu Rev Cell Biol 4, 487–525.PubMedCrossRefGoogle Scholar
  17. 17.
    Burridge, K., and Chrzanowska-Wodnicka, M. (1996) Focal adhesions, contractility, and signaling, Annu Rev Cell Dev Biol 12, 463–518.PubMedCrossRefGoogle Scholar
  18. 18.
    Shaw, L. M., Messier, J. M., and Mercurio, A. M. (1990) The activation dependent adhesion of macrophages to laminin involves cytoskeletal anchoring and phosphorylation of the alpha 6 beta 1 integrin, J Cell Biol 110, 2167–2174.PubMedCrossRefGoogle Scholar
  19. 19.
    Miyamoto, S., Teramoto, H., Coso, O. A., Gutkind, J. S., Burbelo, P. D., Akiyama, S. K., and Yamada, K. M. (1995) Integrin function: molecular hierarchies of cytoskeletal and signaling molecules, J Cell Biol 131, 791–805.PubMedCrossRefGoogle Scholar
  20. 20.
    Krsko, P., Sukhishvili, S., Mansfield, M., Clancy, R., and Libera, M. (2003) Electron-beam surface-patterned poly(ethylene glycol) microhydrogels, Langmuir 19, 5618–5625.CrossRefGoogle Scholar
  21. 21.
    Brough, B., Christman, K. L., Wong, T. S., Kolodziej, C. M., Forbes, J. G., Wang, K., Maynard, H. D., and Ho, C.-M. (2007) Surface initiated actin polymerization from top-down manufactured nanopatterns, Soft Matter 3, 541–546.CrossRefGoogle Scholar
  22. 22.
    Hong, Y., Krsko, P., and Libera, M. (2004) Protein surface patterning using nanoscale PEG hydrogels, Langmuir 20, 11123–11126.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of BioengineeringUniversity of CaliforniaSan DiegoUSA
  2. 2.Department of Chemistry & BiochemistryUniversity of CaliforniaLos AngelesUSA

Personalised recommendations