Gene Regulation During Cold Stress Acclimation in Plants

  • Viswanathan Chinnusamy
  • Jian-Kang Zhu
  • Ramanjulu Sunkar
Part of the Methods in Molecular Biology book series (MIMB, volume 639)


Cold stress adversely affects plant growth and development and thus limits crop productivity. Diverse plant species tolerate cold stress to a varying degree, which depends on reprogramming gene expression to modify their physiology, metabolism, and growth. Cold signal in plants is transmitted to activate CBF-dependent (C-repeat/drought-responsive element binding factor-dependent) and CBF-independent transcriptional pathway, of which CBF-dependent pathway activates CBF regulon. CBF transcription factor genes are induced by the constitutively expressed ICE1 (inducer of CBF expression 1) by binding to the CBF promoter. ICE1–CBF cold response pathway is conserved in diverse plant species. Transgenic analysis in different plant species revealed that cold tolerance can be significantly enhanced by genetic engineering CBF pathway. Posttranscriptional regulation at pre-mRNA processing and export from nucleus plays a role in cold acclimation. Small noncoding RNAs, namely micro-RNAs (miRNAs) and small interfering RNAs (siRNAs), are emerging as key players of posttranscriptional gene silencing. Cold stress-regulated miRNAs have been identified in Arabidopsis and rice. In this chapter, recent advances on cold stress signaling and tolerance are highlighted.

Key words

Cold stress second messengers CBF regulon CBF-independent regulation ICE1 posttranscriptional gene regulation 


  1. 1.
    Yamaguchi-Shinozaki, K., and Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57, 781–803.PubMedCrossRefGoogle Scholar
  2. 2.
    Chinnusamy, V., Zhu, J., and Zhu, J.K. (2007). Cold stress regulation of gene expression plants. Trends Plant Sci 12, 444–451.PubMedCrossRefGoogle Scholar
  3. 3.
    Orvar, B.L., Sangwan, V., Omann, F., and Dhindsa, R. (2000). Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J 23, 785–794.PubMedCrossRefGoogle Scholar
  4. 4.
    Sangwan, V., Foulds, I., Singh, J., and Dhindsa, R.J. (2001). Cold activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx. Plant J 27, 1–12.PubMedCrossRefGoogle Scholar
  5. 5.
    Vaultier, M.N., Cantrel, C., Vergnolle, C., Justin, A.-M., Demandre, C., Benhassaine-Kesri, G., Cicek, D., Zachowski, A., and Ruelland, E. (2006) Desaturase mutants reveal that membrane rigidification acts as a cold perception mechanism upstream of the diacylglycerol kinase pathway in Arabidopsis cells. FEBS Lett 580, 4218–4223.PubMedCrossRefGoogle Scholar
  6. 6.
    Knight, M.R. (2002). Signal transduction leading to low-temperature tolerance in Arabidopsis thaliana. Philos Trans R Soc Lond B Biol Sci 357, 871–875.PubMedCrossRefGoogle Scholar
  7. 7.
    Carpaneto, A., Ivashikina, N., Levchenko, V., Krol, E., Jeworutzki, E., Zhu, J.K., and Hedrich, R. (2007). Cold transiently activates calcium-permeable channels in Arabidopsis mesophyll cells. Plant Physiol 143, 487–494.PubMedCrossRefGoogle Scholar
  8. 8.
    Vergnolle, C., Vaultier, M.N., Taconnat, L., Renou, J.P., Kader, J.C., Zachowski, A., and Ruell, E. (2005). The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions. Plant Physiol 139, 1217–1233.PubMedCrossRefGoogle Scholar
  9. 9.
    Xiong, L., Lee, B.H., Ishitani, M., Lee, H., Zhang, C., and Zhu, J.K. (2001). FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Dev 15, 1971–1984.PubMedCrossRefGoogle Scholar
  10. 10.
    Catala, R., Santos, E., Alonso, J.M., Ecker, J.R., Martinez-Zapater, J.M., and Salinas, J. (2003). Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell 15, 2940–2951.PubMedCrossRefGoogle Scholar
  11. 11.
    Teige, M., Scheikl, E., Eulgem, T., Doczi, R., Ichimura, K., Shinozaki, K., Dangl, J.L., and Hirt, H. (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15, 141–152.PubMedCrossRefGoogle Scholar
  12. 12.
    Lee, B.H., Lee, H., Xiong, L., and Zhu, J.K. (2002). A mitochondrial complex I defect impairs cold-regulated nuclear gene expression. Plant Cell 14, 1235–1251.PubMedCrossRefGoogle Scholar
  13. 13.
    Sheen, J. (1996). Specific Ca2+-dependent protein kinase in stress signal transduction. Science 274, 1900–1902.PubMedCrossRefGoogle Scholar
  14. 14.
    Pitzschke, A. and Hirt, H. (2006). Mitogen-activated protein kinases and reactive oxygen species signaling in plants.Plant Physiol 141, 351–356.PubMedCrossRefGoogle Scholar
  15. 15.
    Lee, B.H., Henderson, D.A., and Zhu, J.K. (2005). The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17, 3155–3175.PubMedCrossRefGoogle Scholar
  16. 16.
    Stockinger, E.J., Gilmour, S.J., and Thomashow, M.F. (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcription activator that binds to the C repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94, 1035–1040.PubMedCrossRefGoogle Scholar
  17. 17.
    Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA-binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression in Arabidopsis. Plant Cell 10, 1391–1406.PubMedCrossRefGoogle Scholar
  18. 18.
    Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O., and Thomashow, M.F. (1998). Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280, 104–106.PubMedCrossRefGoogle Scholar
  19. 19.
    Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress inducible transcription factor. Nat Biotech 17, 287–291.CrossRefGoogle Scholar
  20. 20.
    Fowler, S. and Thomashow, M.F. (2002). Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14, 1675–1690.PubMedCrossRefGoogle Scholar
  21. 21.
    Maruyama, K., Sakuma, Y., Kasuga, M., Ito, Y., Seki, M., Goda, H., Shimada, Y., Yoshida, S., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2004). Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38, 982–993.PubMedCrossRefGoogle Scholar
  22. 22.
    Jaglo, K.R., Kleff, S., Amundsen, K.L., Zhang, X., Haake, V., Zhang, J.Z., Deits, T., and Thomashow, M.F. (2001). Components of the Arabidopsis C-repeat/dehydration responsive element binding factor cold-response pathway are conserved in Brassica napusand other plant species. Plant Physiol 127, 910–917.PubMedCrossRefGoogle Scholar
  23. 23.
    Hsieh, T.H., Lee, J.T., Charng, Y.Y., and Chan, M.T. (2002). Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130, 618–26.PubMedCrossRefGoogle Scholar
  24. 24.
    Hsieh, T.H., Lee, J.T., Yang, P.T., Chiu, L.H., Charng, Y.Y., Wang, Y.C., and Chan, M.T. (2002). Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129, 1086–1094.PubMedCrossRefGoogle Scholar
  25. 25.
    Kasuga, M., Miura, S., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2004). A combination of the Arabidopsis DREB1A gene and stress-inducible RD29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45, 346–350.PubMedCrossRefGoogle Scholar
  26. 26.
    Pellegrineschi, A., Reynolds, M., Pacheco, M., Brito, R.M., Almeraya, R., and Yamaguchi-Shinozaki, K., Hoisington, D. (2004). Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47, 493–500.PubMedCrossRefGoogle Scholar
  27. 27.
    Oh, S.J., Song, S.I., Kim, Y.S., Jang, H.J., Kim, S.Y., Kim, M, Kim, Y.K., Nahm, B.H., and Kim, J.K. (2005). Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138, 341–351.PubMedCrossRefGoogle Scholar
  28. 28.
    Al-Abed, D., Madasamy, P., Talla, R., Goldman, S., and Rudrabhatla, S. (2007). Genetic engineering of maize with the Arabidopsis DREB1A/CBF3 gene using split-seed explants. Crop Sci 47, 2390–2402.CrossRefGoogle Scholar
  29. 29.
    Pino, M.T., Skinner, J.S., Park, E.J., Jeknic Z, Hayes, P.M., Thomashow, M.F., and Chen, T.H.H (2007). Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. Plant Biotechnology J. 5, 591–604.CrossRefGoogle Scholar
  30. 30.
    Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E.G., Miura, S., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33, 751–763.PubMedCrossRefGoogle Scholar
  31. 31.
    Ito, Y., Katsura, K., Maruyama, K., Taji, T., Kobayashi, M., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47, 141–153.PubMedCrossRefGoogle Scholar
  32. 32.
    Qin, F, Sakuma, Y, Li, J., Liu, Q, Li, Y-Q, Shinozaki, K, and Yamaguchi-Shinozaki, K (2004). Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays. Plant Cell Physiol 45,1042–1052.PubMedCrossRefGoogle Scholar
  33. 33.
    Savitch, L.V., Allard G., Seki M., Robert, L.S., Tinker, N.A., Huner, N.P., Shinozaki K., and Singh, J. (2005). The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. Plant Cell Physiol 46, 1525–1539.PubMedCrossRefGoogle Scholar
  34. 34.
    Welling, A., and Palva, E.T. (2008). Involvement of CBF transcription factors in winter hardiness in birch. Plant Physiol 147, 1199–1211.PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang X., Fowler, S.G., Cheng H., Lou Y., Rhee, S.Y., Stockinger, E.J., and Thomashow, M.F. (2004). Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J 39, 905–919.PubMedCrossRefGoogle Scholar
  36. 36.
    Gilmour, S.J., Fowler, S.G., and Thomashow, M.F. (2004). Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol 54, 767–781.PubMedCrossRefGoogle Scholar
  37. 37.
    Achard, P., Gong, F., Cheminant, S., Alioua, M., Hedden, P., and Genschik, P. (2008). The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20, 2117–2129.PubMedCrossRefGoogle Scholar
  38. 38.
    Chinnusamy, V., Ohta, M., Kanrar, S., Lee B.-h, Hong, X., Agarwal, M., and Zhu, J.K. (2003). ICE1, a regulator of cold induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17, 1043–1054.PubMedCrossRefGoogle Scholar
  39. 39.
    Fursova, O.V., Pogorelko, G.V., and Tarasov, V.A. (2009). Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. Gene 429, 98–103.PubMedCrossRefGoogle Scholar
  40. 40.
    Badawi, M., Reddy, Y.V., Agharbaoui, Z., Tominaga, Y., Danyluk, J., Sarhan, F., and Houde, M. (2008). Structure and functional analysis of wheat ICE (Inducer of CBF Expression) genes. Plant Cell Physiol 49, 1237–1249.PubMedCrossRefGoogle Scholar
  41. 41.
    Agarwal, M., Hao, Y., Kapoor, A., Dong, C.H., Fujii, H., Zheng, X., and Zhu, J.K. (2006). A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281, 37636–37645.PubMedCrossRefGoogle Scholar
  42. 42.
    Miura, K., Jin, J.B., Lee, J., Yoo, C.Y., Stirm, V., Miura, T., Ashworth, E.N., Bressan, R.A., Yun, D.J., and Hasegawa, P.M. (2007). SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19, 1403–1414.PubMedCrossRefGoogle Scholar
  43. 43.
    Dong, C.H., Agarwal, M., Zhang, Y., Xie, Q., and Zhu, J.K. (2006). The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA 103, 8281–8286.PubMedCrossRefGoogle Scholar
  44. 44.
    Kanaoka, M.M., Pillitteri, L.J., Fujii, H., Yoshida, Y., Bogenschutz, N.L., Takabayashi, J., Zhu, J.K., and Torii, K.U. (2008).SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation. Plant Cell 20, 1775–1785.PubMedCrossRefGoogle Scholar
  45. 45.
    Doherty, C.J., Van Buskirk, H.A., Myers, S.J., and Thomashow, M.F. (2009). Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21, 972–984.PubMedCrossRefGoogle Scholar
  46. 46.
    Novillo, F., Alonso, J.M., Ecker, J.R., and Salinas, J. (2004). CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 101, 3985–3990.PubMedCrossRefGoogle Scholar
  47. 47.
    Novillo, F., Medina, J., and Salinas, J. (2007). Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Natl Acad Sci USA 104, 21002–21007.PubMedCrossRefGoogle Scholar
  48. 48.
    Vogel, J.T., et al. (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41, 195–211.PubMedCrossRefGoogle Scholar
  49. 49.
    Lee, H., Guo, Y., Ohta, M., Xiong, L., Stevenson, B., and Zhu, J.K. (2002b). LOS2, a genetic locus required for cold responsive transcription encodes a bi-functional enolase. EMBO J. 21, 2692–2702.PubMedCrossRefGoogle Scholar
  50. 50.
    Xiong, L., Lee, H., Ishitani, M., Tanaka, Y., Stevenson, B., Koiwa, H., Bressan, R.A., Hasegawa, P.M., and Zhu, J.K.. (2002) Repression of stress-responsive genes by FIERY2, a novel transcriptional regulator in Arabidopsis. Proc Natl Acad Sci USA 99, 10899–10904.PubMedCrossRefGoogle Scholar
  51. 51.
    Fowler, S.G., Cook, D., and Thomashow, M.F. (2005) Low temperature induction of Arabidopsis CBF1, 2 and 3 is gated by the circadian clock. Plant Physiol 137, 961–968.PubMedCrossRefGoogle Scholar
  52. 52.
    Xin, Z., Mandaokar, A., Chen, J., Last, R.L., and Browse, J. (2007). Arabidopsis ESK1 encodes a novel regulator of freezing tolerance. Plant J. 49, 786–799.PubMedCrossRefGoogle Scholar
  53. 53.
    Zhu, J., Shi, H., Lee, B.H., Damsz, B., Cheng, S., Stirm, V., Zhu, J.K., Hasegawa, P.M., and Bressan, R.A. (2004). An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc Natl Acad Sci USA 101, 9873–9878.PubMedCrossRefGoogle Scholar
  54. 54.
    Zhu, J., Verslues, P.E., Zheng, X., Lee, B.H., Zhan, X., Manabe, Y., Sokolchik, I., Zhu, Y., Dong, C.H., Zhu, J.K., Hasegawa, P.M., and Bressan, R.A. (2005). HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proc Natl Acad Sci USA 102, 9966–9971.PubMedCrossRefGoogle Scholar
  55. 55.
    Kim, J.C., Lee, S.H., Cheong, Y.H., Yoo, C.M., Lee, S.I., Chun, H.J., Yun, D.J., Hong, J.C., Lee, S.Y., Lim, C.O., and Cho, M.J. (2001) A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J 25, 247–259.PubMedCrossRefGoogle Scholar
  56. 56.
    Vannini, C., Locatelli, F., Bracale, M., Magnani, E., Marsoni, M., Osnato, M., Mattana, M., Baldoni, E., and Coraggio, I. (2004). Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J 37, 115–127.PubMedCrossRefGoogle Scholar
  57. 57.
    Dai, X., Xu, Y., Ma, Q., Xu, W., Wang, T., Xue, Y., and Chong, K. (2007). Overexpression of a R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143, 1739–1751.PubMedCrossRefGoogle Scholar
  58. 58.
    Yi, S.Y., Kim, J.H., Joung, Y.H., Lee, S., Kim, W.T., Yu, S.H., and Choi, D. (2004). The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol 136, 2862–2874.PubMedCrossRefGoogle Scholar
  59. 59.
    Xu, Z.S., Xia, L.Q., Chen, M., Cheng, X.G., Zhang, R.Y., Li, L.C., Zhao, Y.X., Lu, Y., Ni, Z.Y., Liu, L., Qiu, Z.G., and Ma, Y.Z. (2007). Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol Biol 65, 719–732.PubMedCrossRefGoogle Scholar
  60. 60.
    Liu, N., Zhong, N.Q., Wang, G.L., Li, L.J., Liu, X.L., He, Y.K., and Xia, G.X. (2007). Cloning and functional characterization of PpDBF1 gene encoding a DRE-binding transcription factor from Physcomitrella patens. Planta 226, 827–838.PubMedCrossRefGoogle Scholar
  61. 61.
    Chen, M., Xu, Z., Xia, L., Li, L., Cheng, X., Dong, J., Wang, Q., and Ma, Y. (2009). Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3, in soybean (Glycine max L.). J Exp Bot 60, 121–135.PubMedCrossRefGoogle Scholar
  62. 62.
    Kobayashi, F., Maeta, E., Terashima, A., Kawaura, K., Ogihara, Y., and Takumi, S. (2008). Development of abiotic stress tolerance via bZIP-type transcription factor LIP19 in common wheat. J Exp Bot 59, 891–905.PubMedCrossRefGoogle Scholar
  63. 63.
    Hu, H., You, J., Fang, Y., Zhu, X., Qi, Z., and Xiong L (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67, 169–181.PubMedCrossRefGoogle Scholar
  64. 64.
    Mastrangelo, A.M., Belloni, S., Barilli, S., Ruperti, B., Fonzo, N.D., Stanca, A.M., and Cattivelli, L. (2005). Low temperature promotes intron retention in two e-cor genes of durum wheat. Planta 221, 705–715.PubMedCrossRefGoogle Scholar
  65. 65.
    Nakayama, K., Okawa, K., Kakizaki, T., Honma, T., Itoh, H., and Inaba, T. (2007). Arabidopsis Cor15am is a chloroplast stromal protein that has cryoprotective activity and forms oligomers. Plant Physiol 144, 513–523.PubMedCrossRefGoogle Scholar
  66. 66.
    Lee, B.H., Kapoor, A., Zhu, J., and Zhu, J.K. (2006). STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis. Plant Cell 18, 1736–1749.PubMedCrossRefGoogle Scholar
  67. 67.
    Palusa, S.G., Ali, G.S., and Reddy, A.S.N. (2007). Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins: regulation by hormones and stresses. Plant J. 49, 1091–1107.PubMedCrossRefGoogle Scholar
  68. 68.
    Tanabe, N., Yoshimura, K., Kimura, A., Yabuta, Y., and Shigeoka, S. (2007). Differential expression of alternatively spliced mRNAs of Arabidopsis SR protein homologs, atSR30 and atSR45a, in response to environmental stress. Plant Cell Physiol 48, 1036–1049.PubMedCrossRefGoogle Scholar
  69. 69.
    Sunkar, R., Chinnusamy, V., Zhu, J., and Zhu, J.K. (2007). Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12, 301–309.PubMedCrossRefGoogle Scholar
  70. 70.
    Sunkar, R., Kapoor, A., and Zhu, J.K. (2006). Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18, 2051–2065.PubMedCrossRefGoogle Scholar
  71. 71.
    Borsani, O, Zhu, J., Verslues, P.E., Sunkar, R., and Zhu, J.K. (2005). Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123, 1279–1291.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2010

Authors and Affiliations

  • Viswanathan Chinnusamy
    • 1
  • Jian-Kang Zhu
    • 1
  • Ramanjulu Sunkar
    • 2
  1. 1.Department of Botany and Plant SciencesUniversity of CaliforniaRiversideUSA
  2. 2.Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterUSA

Personalised recommendations