Genetic Variants in the Vesicular Monoamine Transporter 1 (VMAT1/SLC18A1) and Neuropsychiatric Disorders

  • Falk W. Lohoff


Vesicular monoamine transporters (VMATs) are involved in the presynaptic packaging of monoaminergic neurotransmitters into storage granules. Upon an action potential, vesicles release their contents into the synaptic cleft via exocytosis. Since insufficient or excess release of neurotransmitter might alter neurochemical function and neurotransmission, VMATs are an important target for biological research in neuropsychiatric disorders. Two structurally related but pharmacologically distinct VMATs have been identified, encoded by separate genes, VMAT1 (SLC18A1) and VMAT2 (SLC18A2). Although it was reported initially that only VMAT2 is expressed in brain, recent studies indicate that VMAT1 is also expressed in brain, thus making both transporters plausible candidate genes for neuropsychiatric disorders. The gene encoding VMAT1 is located on chromosome 8p21, a region implicated in linkage studies of schizophrenia, bipolar disorder, and anxiety-related phenotypes. Furthermore, several recent genetic case–control studies have documented an association between common missense variations in the VMAT1 gene and susceptibility to bipolar disorder and schizophrenia. Variations in the VMAT1 gene might affect transporter function and might be involved in the etiology of neuropsychiatric disorders. This chapter describes methods for genotyping three missense polymorphisms implicated in neuropsychiatric disorders (Thr4Pro, Thr98Ser, Thr136Ile) using TaqMan-based PCR and standard PCR approaches.

Key words

Vesicular monoamine transporter psychiatric disorders schizophrenia bipolar disorder depression genetics brain expression reserpine tetrabenazine SLC18A1 


  1. 1.
    Liu, Y., Peter, D., Roghani, A., Schuldiner, S., Prive, G.G., Eisenberg, D., Brecha, N., and Edwards, R.H. (1992) A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter. Cell 70, 539–551.CrossRefPubMedGoogle Scholar
  2. 2.
    Peter, D., Finn, J.P., Klisak, I., Liu, Y., Kojis, T., Heinzmann, C., Roghani, A., Sparkes, R.S., and Edwards, R.H. (1993) Chromosomal localization of the human vesicular amine transporter genes. Genomics 18, 720–723.CrossRefPubMedGoogle Scholar
  3. 3.
    Erickson, J.D., Schafer, M.K., Bonner, T.I., Eiden, L.E., and Weihe, E. (1996) Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc. Natl. Acad. Sci. U S A 93, 5166–5171.CrossRefPubMedGoogle Scholar
  4. 4.
    Eiden, L.E., Schafer, M.K., Weihe, E., and Schutz, B. (2004) The vesicular amine transporter family (SLC18): amine/proton antiporters required for vesicular accumulation and regulated exocytotic secretion of monoamines and acetylcholine. Pflugers Arch. 447, 636–640.CrossRefPubMedGoogle Scholar
  5. 5.
    Hansson, S.R., Hoffman, B.J., and Mezey, E. (1998) Ontogeny of vesicular monoamine transporter mRNAs VMAT1 and VMAT2. I. The developing rat central nervous system. Brain Res. Dev. Brain Res. 110, 135–158.CrossRefPubMedGoogle Scholar
  6. 6.
    Lohoff, F.W., Dahl, J.P., Ferraro, T.N., Arnold, S.E., Gallinat, J., Sander, T., and Berrettini, W.H. (2006) Variations in the vesicular monoamine transporter 1 gene (VMAT1/SLC18A1) are associated with bipolar I disorder. Neuropsychopharmacology 31, 2739–2747.CrossRefPubMedGoogle Scholar
  7. 7.
    Brunk, I., Blex, C., Rachakonda, S., Holtje, M., Winter, S., Pahner, I., Walther, D.J., and Ahnert-Hilger, G. (2006) The first luminal domain of vesicular monoamine transporters mediates G-protein-dependent regulation of transmitter uptake. J. Biol. Chem. 281, 33373–33385.CrossRefPubMedGoogle Scholar
  8. 8.
    Chen, F.E. and Huang, J. (2005) Reserpine: a challenge for total synthesis of natural products. Chem. Rev. 105, 4671–4706.CrossRefPubMedGoogle Scholar
  9. 9.
    Schildkraut, J.J. and Kety, S.S. (1967) Biogenic amines and emotion. Science 156, 21–37.CrossRefPubMedGoogle Scholar
  10. 10.
    Heslop, K.E. and Curzon, G. (1999) Effect of reserpine on behavioural responses to agonists at 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT2C receptor subtypes. Neuropharmacology 38, 883–891.CrossRefPubMedGoogle Scholar
  11. 11.
    Goodwin, F.K. and Bunney, W.E., Jr. (1971) Depressions following reserpine: a reevaluation. Semin. Psychiatry 3, 435–448.PubMedGoogle Scholar
  12. 12.
    Bant, W.P. (1978) Antihypertensive drugs and depression: a reappraisal. Psychol. Med. 8, 275–283.CrossRefPubMedGoogle Scholar
  13. 13.
    Widmer, R.B. (1985) Reserpine: the maligned antihypertensive drug. J. Fam. Pract. 20, 81–83.PubMedGoogle Scholar
  14. 14.
    Baumeister, A.A., Hawkins, M.F., and Uzelac, S.M. (2003) The myth of reserpine-induced depression: role in the historical development of the monoamine hypothesis. J. Hist. Neurosci. 12, 207–220.CrossRefPubMedGoogle Scholar
  15. 15.
    Berger, S.P., Winhusen, T.M., Somoza, E.C., Harrer, J.M., Mezinskis, J.P., Leiderman, D.B., Montgomery, M.A., Goldsmith, R.J., Bloch, D.A., Singal, B.M., and Elkashef, A. (2005) A medication screening trial evaluation of reserpine, gabapentin and lamotrigine pharmacotherapy of cocaine dependence. Addiction 100 (Suppl 1), 58–67.CrossRefPubMedGoogle Scholar
  16. 16.
    Winhusen, T., Somoza, E., Sarid-Segal, O., Goldsmith, R.J., Harrer, J.M., Coleman, F.S., Kahn, R., Osman, S., Mezinskis, J., Li, S.H., Lewis, D., Afshar, M., Ciraulo, D.A., Horn, P., Montgomery, M.A., and Elkashef, A. (2007) A double-blind, placebo-controlled trial of reserpine for the treatment of cocaine dependence. Drug Alcohol Depend. 91, 205–212.CrossRefPubMedGoogle Scholar
  17. 17.
    Leiderman, D.B., Shoptaw, S., Montgomery, A., Bloch, D.A., Elkashef, A., LoCastro, J., and Vocci, F. (2005) Cocaine Rapid Efficacy Screening Trial (CREST): a paradigm for the controlled evaluation of candidate medications for cocaine dependence. Addiction 100 (Suppl 1), 1–11.CrossRefPubMedGoogle Scholar
  18. 18.
    Hayden, M.R., Leavitt, B.R., Yasothan, U., and Kirkpatrick, P. (2009) Tetrabenazine. Nature Rev. 8, 17–18.CrossRefGoogle Scholar
  19. 19.
    Kenney, C., and Jankovic, J. (2006) Tetrabenazine in the treatment of hyperkinetic movement disorders. Expert. Rev. Neurother. 6, 7–17.CrossRefPubMedGoogle Scholar
  20. 20.
    Cordeiro, M.L., Gundersen, C.B., and Umbach, J.A. (2002) Lithium ions modulate the expression of VMAT2 in rat brain. Brain Res. 953, 189–194.CrossRefPubMedGoogle Scholar
  21. 21.
    Cordeiro, M.L., Gundersen, C.B., and Umbach, J.A. (2004) Convergent effects of lithium and valproate on the expression of proteins associated with large dense core vesicles in NGF-differentiated PC12 cells. Neuropsychopharmacology 29, 39–44.CrossRefPubMedGoogle Scholar
  22. 22.
    Cordeiro, M.L., Umbach, J.A., and Gundersen, C.B. (2000) Lithium ions Up-regulate mRNAs encoding dense-core vesicle proteins in nerve growth factor-differentiated PC12 cells. J Neurochem 75, 2622–2625.CrossRefPubMedGoogle Scholar
  23. 23.
    Manji, H.K. and Lenox, R.H. (2000) Signaling: cellular insights into the pathophysiology of bipolar disorder. Biol. Psychiatry 48, 518–530.CrossRefPubMedGoogle Scholar
  24. 24.
    Tamminga, C.A. and Holcomb, H.H. (2005) Phenotype of schizophrenia: a review and formulation. Mol. Psychiatry 10, 27–39.CrossRefPubMedGoogle Scholar
  25. 25.
    Zheng, G., Dwoskin, L.P., and Crooks, P.A. (2006) Vesicular monoamine transporter 2: role as a novel target for drug development. Aaps J. 8, E682–692.Google Scholar
  26. 26.
    Zubieta, J.K., Huguelet, P., Ohl, L.E., Koeppe, R.A., Kilbourn, M.R., Carr, J.M., Giordani, B.J., and Frey, K.A. (2000) High vesicular monoamine transporter binding in asymptomatic bipolar I disorder: sex differences and cognitive correlates. Am. J. Psychiatry 157, 1619–1628.CrossRefPubMedGoogle Scholar
  27. 27.
    Zubieta, J.K., Taylor, S.F., Huguelet, P., Koeppe, R.A., Kilbourn, M.R., and Frey, K.A. (2001) Vesicular monoamine transporter concentrations in bipolar disorder type I, schizophrenia, and healthy subjects. Biol. Psychiatry 49, 110–116.CrossRefPubMedGoogle Scholar
  28. 28.
    Lin, Z., Walther, D., Yu, X.-Y., Li, S., Drgon, T., and Uhl, G.R. (2005) SLC18A2 promoter haplotypes and identification of a novel protective factor against alcoholism. Hum. Mol. Genet. 14, 1393–1404.CrossRefPubMedGoogle Scholar
  29. 29.
    Little, K.Y., Krolewski, D.M., Zhang, L., and Cassin, B.J. (2003) Loss of striatal vesicular monoamine transporter protein (VMAT2) in human cocaine users. Am. J. Psychiatry 160, 47–55.CrossRefPubMedGoogle Scholar
  30. 30.
    Wilson, J.M., Levey, A.I., Bergeron, C., Kalasinsky, K., Ang, L., Peretti, F., Adams, V.I., Smialek, J., Anderson, W.R., Shannak, K., Deck, J., Niznik, H.B., and Kish, S.J. (1996) Striatal dopamine, dopamine transporter, and vesicular monoamine transporter in chronic cocaine users. Ann. Neurol. 40, 428–439.CrossRefPubMedGoogle Scholar
  31. 31.
    DaSilva, J.N., Kilbourn, M.R., and Mangner, T.J. (1993) Synthesis of a [11C]methoxy derivative of alpha-dihydrotetrabenazine: a radioligand for studying the vesicular monoamine transporter. Appl. Radiat. Isot. 44, 1487–1489.CrossRefPubMedGoogle Scholar
  32. 32.
    DaSilva, J.N., Carey, J.E., Sherman, P.S., Pisani, T.J., and Kilbourn, M.R. (1994) Characterization of [11C]tetrabenazine as an in vivo radioligand for the vesicular monoamine transporter. Nucl. Med. Biol. 21, 151–156.CrossRefPubMedGoogle Scholar
  33. 33.
    Lohoff, F.W., Lautenschlager, M., Mohr, J., Ferraro, T.N., Sander, T., and Gallinat, J. (2008) Association between variation in the vesicular monoamine transporter 1 gene on chromosome 8p and anxiety-related personality traits. Neurosci. Lett. 434, 41–45.CrossRefPubMedGoogle Scholar
  34. 34.
    Lohoff, F.W., Weller, A.E., Bloch, P.J., Buono, R.J., Doyle, G.A., Ferraro, T.N., and Berrettini, W.H. (2008) Association between polymorphisms in the vesicular monoamine transporter 1 gene (VMAT1/SLC18A1) on chromosome 8p and schizophrenia. Neuropsychobiology 57, 55–60.CrossRefPubMedGoogle Scholar
  35. 35.
    Roghani, A., Welch, C., Xia, Y., Liu, Y., Peter, D., Finn, J.P., Edwards, R.H., and Lusis, A.J. (1996) Assignment of the mouse vesicular monoamine transporter genes, Slc18a1 and Slc18a2, to chromosomes 8 and 19 by linkage analysis. Mamm. Genome 7, 393–394.CrossRefPubMedGoogle Scholar
  36. 36.
    Berrettini, W. (2003) Evidence for shared susceptibility in bipolar disorder and schizophrenia. Am. J. Med. Genet. 123C, 59–64.CrossRefPubMedGoogle Scholar
  37. 37.
    Berrettini, W. (2004) Bipolar disorder and schizophrenia: convergent molecular data. Neuromolecular Med. 5, 109–117.CrossRefPubMedGoogle Scholar
  38. 38.
    Park, N., Juo, S.H., Cheng, R., Liu, J., Loth, J.E., Lilliston, B., Nee, J., Grunn, A., Kanyas, K., Lerer, B., Endicott, J., Gilliam, T.C., and Baron, M. (2004) Linkage analysis of psychosis in bipolar pedigrees suggests novel putative loci for bipolar disorder and shared susceptibility with schizophrenia. Mol. Psychiatry 9, 1091–1099.CrossRefPubMedGoogle Scholar
  39. 39.
    Cheng, R., Juo, S.H., Loth, J.E., Nee, J., Iossifov, I., Blumenthal, R., Sharpe, L., Kanyas, K., Lerer, B., Lilliston, B., Smith, M., Trautman, K., Gilliam, T.C., Endicott, J., and Baron, M. (2006) Genome-wide linkage scan in a large bipolar disorder sample from the National Institute of Mental Health genetics initiative suggests putative loci for bipolar disorder, psychosis, suicide, and panic disorder. Mol. Psychiatry 11, 252–260.CrossRefPubMedGoogle Scholar
  40. 40.
    Craddock, N. and Jones, I. (1999) Genetics of bipolar disorder. J. Med. Genet. 36, 585–594.PubMedGoogle Scholar
  41. 41.
    Smoller, J.W. and Finn, C.T. (2003) Family, twin, and adoption studies of bipolar disorder. Am. J. Med. Genet. C. Semin. Med. Genet. 123, 48–58.CrossRefGoogle Scholar
  42. 42.
    Moller, H.J. (2003) Bipolar disorder and schizophrenia: distinct illnesses or a continuum? J. Clin. Psychiatry 64 (Suppl 6), 23–27; discussion 28.PubMedGoogle Scholar
  43. 43.
    Sikich, L. (2008) Efficacy of atypical antipsychotics in early-onset schizophrenia and other psychotic disorders. J. Clin. Psychiatry 69 (Suppl 4), 21–25.PubMedGoogle Scholar
  44. 44.
    Bly, M. (2005) Mutation in the vesicular monoamine gene, SLC18A1, associated with schizophrenia. Schizophr. Res. 78, 337–338.CrossRefPubMedGoogle Scholar
  45. 45.
    Richards, M., Iijima, Y., Kondo, H., Shizuno, T., Hori, H., Arima, K., Saitoh, O., and Kunugi, H. (2006) Association study of the vesicular monoamine transporter 1 (VMAT1) gene with schizophrenia in a Japanese population. Behav. Brain Funct. 2, 39.CrossRefPubMedGoogle Scholar
  46. 46.
    Chen, S.F., Chen, C.H., Chen, J.Y., Wang, Y.C., Lai, I.C., Liou, Y.J., and Liao, D.L. (2007) Support for association of the A277C single nucleotide polymorphism in human vesicular monoamine transporter 1 gene with schizophrenia. Schizophr. Res. 90, 363–365.CrossRefPubMedGoogle Scholar
  47. 47.
    Sievert, M.K., and Ruoho, A.E. (1997) Peptide mapping of the [125I]Iodoazidoketanserin and [125I]2-N-[(3'-iodo-4'-azidophenyl)propionyl]tetrabenazine binding sites for the synaptic vesicle monoamine transporter. J. Biol. Chem. 272, 26049–26055.CrossRefPubMedGoogle Scholar
  48. 48.
    Senkowski, D., Linden, M., Zubragel, D., Bar, T., and Gallinat, J. (2003) Evidence for disturbed cortical signal processing and altered serotonergic neurotransmission in generalized anxiety disorder. Biol. Psychiatry 53, 304–314.CrossRefPubMedGoogle Scholar
  49. 49.
    Charney, D.S. and Deutch, A. (1996) A functional neuroanatomy of anxiety and fear: implications for the pathophysiology and treatment of anxiety disorders. Crit. Rev. Neurobiol. 10, 419–446.PubMedGoogle Scholar
  50. 50.
    Handley, S.L. (1995) 5-Hydroxytryptamine pathways in anxiety and its treatment. Pharmacol. & Ther. 66, 103–148.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Falk W. Lohoff
    • 1
  1. 1.Translational Research Laboratories, Department of Psychiatry, Center for Neurobiology and BehaviorUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations