Advertisement

Assessment of the Contribution of the Plasma Membrane Calcium ATPase, PMCA, Calcium Transporter to Synapse Function Using Patch Clamp Electrophysiology and Fast Calcium Imaging

  • Chris J. Roome
  • Ruth M. Empson
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 637)

Abstract

The plasma membrane calcium ATPase, or PMCA, functions to extrude calcium out of cells as a key component necessary for adequate calcium homeostasis in all cells. However, calcium is particularly important at synapses between neurons, where communication relies on the controlled rise and fall in presynaptic calcium that precedes the release of neurotransmitter. Here we show how to infer the real-time contribution of PMCA-mediated calcium extrusion to this presynaptic calcium dynamic and how this influences the properties of the synapse. To do this we have taken advantage of a well-studied synapse in the cerebellum. We use electrophysiology to assess the timing of short-term facilitation at this synapse in the presence and absence of PMCA2 using PMCA2 knockout mice and pharmacology and fast calcium imaging to measure the presynaptic calcium dynamics. These approaches are all highly applicable to other synapses and can help determine the contribution of PMCA, and other transporters or exchangers, to the calcium dynamics that underpin reliable synaptic transmission.

Key words

Membrane ATPase calcium transporter synapse patch clamp electrophysiology fast calcium imaging 

Notes

Acknowledgments

We acknowledge the support of a University of Otago Research Grant, The Neurological Foundation of New Zealand (to RME), and a University of Otago PhD Scholarship to CJR.

References

  1. 1.
    Strehler, E.E. and Zacharias, D.A. (2001) Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol. Rev. 81, 21–50.PubMedGoogle Scholar
  2. 2.
    Berridge, M.J., Bootman, M.D., and Roderick, H.L. (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517–529.CrossRefPubMedGoogle Scholar
  3. 3.
    Strehler, E.E., Heim, R., and Carafoli, E. (1991) Molecular characterization of plasma membrane calcium pump isoforms. Adv. Exp. Med. Biol. 307, 251–261.PubMedGoogle Scholar
  4. 4.
    Caride, A.J., Penheiter, A.R., Filoteo, A.G., Bajzer, Z., Enyedi, A., Penniston, J.T. (2001) The plasma membrane calcium pump displays memory of past calcium spikes. Differences between isoforms 2b and 4b. J. Biol. Chem. 276, 39797–39804.CrossRefPubMedGoogle Scholar
  5. 5.
    Wanaverbecq, N., Marsh, S.J., Al-Qatari, M., and Brown, D.A. (2003) The plasma membrane calcium-ATPase as a major mechanism for intracellular calcium regulation in neurons from the rat superior cervical ganglion. J. Physiol. 550, 83–101.CrossRefPubMedGoogle Scholar
  6. 6.
    Thomas, R.C. (2008) The plasma membrane calcium ATPase (PMCA) of neurons is electroneutral and exchanges 2 H+ for each Ca2+ or Ba2+ ion extruded. J. Physiol. 587(2) 315–327.Google Scholar
  7. 7.
    Kreitzer, M.A., Collis, L.P., Molina, A.J., Smith, P.J., and Malchow, R.P. (2007) Modulation of extracellular proton fluxes from retinal horizontal cells of the catfish by depolarization and glutamate. J. Gen. Physiol. 130, 169–82.Google Scholar
  8. 8.
    Kim, M.H., Korogod, N., Schneggenburger, R., Ho, W.K., and Lee, S.H. (2005) Interplay between Na+/Ca2+ exchangers and mitochondria in Ca2+ clearance at the calyx of Held. J. Neurosci. 25, 6057–6065.CrossRefPubMedGoogle Scholar
  9. 9.
    Lnenicka, G.A., Grizzaffi, J., Lee, B., and Rumpal, N. (2006) Ca2+ dynamics along identified synaptic terminals in Drosophila larvae. J. Neurosci. 26, 12283–12293.CrossRefPubMedGoogle Scholar
  10. 10.
    Jensen, T.P., Filoteo, A.G., Knopfel, T., and Empson, R.M. (2007) Pre synaptic plasma membrane Ca2+ ATPase isoform 2a regulates excitatory synaptic transmission in rat hippocampal CA3. J. Physiol. 579, 85–99.CrossRefPubMedGoogle Scholar
  11. 11.
    Empson, R.M., Garside, M.L., and Knopfel, T. (2007) Plasma membrane Ca2+ ATPase 2 contributes to short-term synapse plasticity at the parallel fiber to Purkinje neuron synapse. J. Neurosci. 27, 3753–3758.CrossRefPubMedGoogle Scholar
  12. 12.
    Ficarella, R., Di Leva, F., Bortolozzi, M., Ortolano, S., Donaudy, F., Petrillo, M., Melchionda, S., Lelli, A., Domi, T., Fedrizzi, L., Lim, D., Shull, G.E., Gasparini, P., Brini, M., Mammano, F., and Carafoli, E. (2007) A functional study of plasma-membrane calcium-pump isoform 2 mutants causing digenic deafness. Proc. Natl. Acad. Sci. USA. 104, 1516–1521.CrossRefPubMedGoogle Scholar
  13. 13.
    Lou, X., Scheuss, V., and Schneggenburger, R. (2005) Allosteric modulation of the presynaptic Ca2+ sensor for vesicle fusion. Nature. 435, 497–501.CrossRefPubMedGoogle Scholar
  14. 14.
    Sabatini, B.L. and Regehr, W.G.(1997) Control of neurotransmitter release by presynaptic waveform at the granule cell to Purkinje cell synapse. J. Neurosci. 17, 3425–3435.PubMedGoogle Scholar
  15. 15.
    Katz, B. and Miledi, R.(1968) The role of calcium in neuromuscular facilitation. J. Physiol. 195, 481–492.PubMedGoogle Scholar
  16. 16.
    Chen, C. and Regehr, W.G. (1999) Contributions of residual calcium to fast synaptic transmission. J. Neurosci. 19, 6257–6266.PubMedGoogle Scholar
  17. 17.
    Burette, A. and Weinberg, R.J. (2007) Perisynaptic organization of plasma membrane calcium pumps in cerebellar cortex. J. Comp. Neurol. 500, 1127–1135.CrossRefPubMedGoogle Scholar
  18. 18.
    Kozel, P.J., Friedman, R.A., Erway, L.C., et al. (1998) Balance and hearing deficits in mice with a null mutation in the gene encoding plasma membrane Ca2+-ATPase isoform 2. J. Biol. Chem. 273, 18693–18696.CrossRefPubMedGoogle Scholar
  19. 19.
    Kurnellas, M.P., Lee, A.K., Li, H., Deng, L., Ehrlich, D.J., and Elkabes, S. (2007) Molecular alterations in the cerebellum of the plasma membrane calcium ATPase 2 (PMCA2)-null mouse indicate abnormalities in Purkinje neurons. Mol. Cell Neurosci. 34, 178–188.CrossRefPubMedGoogle Scholar
  20. 20.
    Choi, H.S. and Eisner, D.A. (1999) The role of sarcolemmal Ca2+-ATPase in the regulation of resting calcium concentration in rat ventricular myocytes. J. Physiol. 515, 109–118.CrossRefPubMedGoogle Scholar
  21. 21.
    Gatto, C. and Milanick, M. A. (1993). Inhibition of the red blood cell calcium pump by eosin and other fluorescein analogues. Am. J. Physiol. 264, C1577–C1586.PubMedGoogle Scholar
  22. 22.
    Herscher, C.J. and Rega, A.F. (1996) Pre-steady-state kinetic study of the mechanism of inhibition of the plasma membrane Ca(2+)-ATPase by lanthanum. Biochemistry 35, 14917–14922.CrossRefPubMedGoogle Scholar
  23. 23.
    Vale-González, C., Alfonso, A., Suñol, C., Vieytes, M.R., and Botana, L.M. (2006) Role of the plasma membrane calcium adenosine triphosphatase on domoate-induced intracellular acidification in primary cultures of cerebellar granule cells. J. Neurosci. Res. 84, 326–337.CrossRefPubMedGoogle Scholar
  24. 24.
    Willoughby, D., Thomas, R., and Schwiening, C. (2001). The effects of intracellular pH changes on resting cytosolic calcium in voltage-clamped snail neurons. J. Physiol. 530, 405–416.CrossRefPubMedGoogle Scholar
  25. 25.
    Benham, C.D., Evans, M.L., and McBain, C.J. (1992). Ca2+ efflux mechanisms following depolarisation evoked calcium transients in cultured rat sensory neurons. J. Physiol. 455, 567–583.PubMedGoogle Scholar
  26. 26.
    Taira, T., Smirnov, S., Voipio, J., and Kaila, K. (1993). Intrinsic proton modulation of excitatory transmission in rat hippocampal slices. Neuroreport 4, 93–96.CrossRefPubMedGoogle Scholar
  27. 27.
    Scheuss, V., Yasuda, R., Sobczyk, A., and Svoboda, K. (2006) Nonlinear [Ca2+] signaling in dendrites and spines caused by activity-dependent depression of Ca2+ extrusion. J. Neurosci. 26, 8183–8194.CrossRefPubMedGoogle Scholar
  28. 28.
    Szewczyk, M.M., Pande, J., and Grover, A.K. (2008) Caloxins: a novel class of selective plasma membrane Ca2+ pump inhibitors obtained using biotechnology. Pflugers Arch. 456, 255–266.CrossRefPubMedGoogle Scholar
  29. 29.
    Pande, J., Mallhi, K.K., and Grover, A.K. (2005) Role of third extracellular domain of plasma membrane Ca2+-Mg2+-ATPase based on the novel inhibitor caloxin 3A1. Cell Calcium. 37, 245–250.CrossRefPubMedGoogle Scholar
  30. 30.
    Pande, J., Mallhi, K.K., Sawh, A., Szewczyk, M.M., Simpson, F., and Grover, A.K. (2006) Aortic smooth muscle and endothelial plasma membrane Ca2+ pump isoforms are inhibited differently by the extracellular inhibitor caloxin 1b1. Am. J. Physiol. Cell Physiol. 290, C1341–C1349.CrossRefPubMedGoogle Scholar
  31. 31.
    Ito, M. (2006) Cerebellar circuitry as a neuronal machine. Prog. Neurobiol. 78, 272–303.CrossRefPubMedGoogle Scholar
  32. 32.
    Hashimoto, K. and Kano, M. (1998) Presynaptic origin of paired-pulse depression at climbing fibre-Purkinje cell synapses in the rat cerebellum. J. Physiol. 506, 391–405.CrossRefPubMedGoogle Scholar
  33. 33.
    Jeon, D., Yang, Y.M., Jeong, M.J., Philipson, K.D., Rhim, H., and Shin, H.S. (2003) Enhanced learning and memory in mice lacking Na+/Ca2+ exchanger 2. Neuron. 38, 965–976.CrossRefPubMedGoogle Scholar
  34. 34.
    Canitano, A., Papa, M., Boscia, F., Castaldo, P., Sellitti, S., Taglialatela, M., and Annunziato, L. (2002) Brain distribution of the Na+/Ca2+ exchanger-encoding genes NCX1, NCX2, and NCX3 and their related proteins in the central nervous system. Ann. NY. Acad. Sci. 976, 394–404.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Chris J. Roome
    • 1
  • Ruth M. Empson
    • 1
  1. 1.Department of Physiology, Otago School of Medical SciencesUniversity of OtagoDunedinNew Zealand

Personalised recommendations