Photochemical Internalization (PCI): A Technology for Drug Delivery

  • Kristian Berg
  • Anette Weyergang
  • Lina Prasmickaite
  • Anette Bonsted
  • Anders Høgset
  • Marie-Therese R. Strand
  • Ernst Wagner
  • Pål K. Selbo
Part of the Methods in Molecular Biology book series (MIMB, volume 635)


The utilization of macromolecules in therapy of cancer and other diseases is becoming increasingly relevant. Recent advances in molecular biology and biotechnology have made it possible to improve targeting and design of cytotoxic agents, DNA complexes, and other macromolecules for clinical applications. To achieve the expected biological effect of these macromolecules, in many cases, internalization to the cell cytosol is crucial. At an intracellular level, the most fundamental obstruction for cytosolic release of the therapeutic molecule is the membrane-barrier of the endocytic vesicles. Photochemical internalization (PCI) is a novel technology for release of endocytosed macromolecules into the cytosol. The technology is based on the use of photosensitizers located in endocytic vesicles that upon activation by light induces a release of macromolecules from their compartmentalization in endocytic vesicles. PCI has been shown to potentiate the biological activity of a large variety of macromolecules and other molecules that do not readily penetrate the plasma membrane, including type I ribosome-inactivating proteins (RIPs), gene-encoding plasmids, adenovirus, oligonucleotides, and the chemotherapeutic bleomycin. PCI has also been shown to enhance the treatment effect of targeted therapeutic macromolecules. The present protocol describes PCI of an epidermal growth factor receptor (EGFR)-targeted protein toxin (Cetuximab–saporin) linked via streptavidin–biotin for screening of targeted toxins as well as PCI of nonviral polyplex-based gene therapy. Although describing in detail PCI of targeted protein toxins and DNA polyplexes, the methodology presented in these protocols are also applicable for PCI of other gene therapy vectors (e.g., viral vectors), peptide nucleic acids (PNA), small interfering RNA (siRNA), polymers, nanoparticles, and some chemotherapeutic agents.

Key words

Photochemical internalization photodynamic photosensitizer drug delivery gene therapy immunotoxin siRNA PNA 


  1. 1.
    Berg, K., Selbo, P. K., Prasmickaite, L., Tjelle, T. E., Sandvig, K., Moan, J. et al. (1999) Photochemical internalization: a novel technology for delivery of macromolecules into cytosol. Cancer Res, 59, 1180–1183.PubMedGoogle Scholar
  2. 2.
    Dolmans, D. E., Fukumura, D., and Jain, R. K. (2003) Photodynamic therapy for cancer. Nat Rev Cancer, 3, 380–387.PubMedCrossRefGoogle Scholar
  3. 3.
    Prasmickaite, L., Høgset, A., and Berg, K. (2001) Evaluation of different photosensitizers for use in photochemical gene transfection. Photochem Photobiol, 73, 388–395.PubMedCrossRefGoogle Scholar
  4. 4.
    Moan, J. and Berg, K. (1991) The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol, 53, 549–553.PubMedCrossRefGoogle Scholar
  5. 5.
    Yip, W. L., Weyergang, A., Berg, K., Tønnesen, H. H., and Selbo, P. K. (2007) Targeted delivery and enhanced cytotoxicity of Cetuximab–saporin by photochemical internalization in epidermal growth factor-positive cancer cells. Mol Pharm, 4, 241–251.PubMedCrossRefGoogle Scholar
  6. 6.
    Høgset, A., Prasmickaite, L., Tjelle, T. E., and Berg, K. (2000) Photochemical transfection: a new technology for light-induced, site-directed gene delivery. Hum Gene Ther, 11, 869–880.PubMedCrossRefGoogle Scholar
  7. 7.
    Høgset, A., Engesæter, B. Ø., Prasmickaite, L., Berg, K., Fodstad, O., and Mælandsmo, G. M. (2002) Light-induced adenovirus gene transfer, an efficient and specific gene delivery technology for cancer gene therapy. Cancer Gene Ther, 9, 365–371.PubMedCrossRefGoogle Scholar
  8. 8.
    Bonsted, A., Høgset, A., Hoover, F., and Berg, K. (2005) Photochemical enhancement of gene delivery to glioblastoma cells is dependent on the vector applied. Anticancer Res, 25, 291–298.PubMedGoogle Scholar
  9. 9.
    Folini, M., Berg, K., Millo, E., Villa, R., Prasmickaite, L., Daidone, M. G., Benatti, U., and Zaffaroni, N. (2003) Photochemical internalization of a peptide nucleic acid targeting the catalytic subunit of human telomerase. Cancer Res, 63, 3490–3494.PubMedGoogle Scholar
  10. 10.
    Shiraishi, T. and Nielsen, P. E. (2006) Photochemically enhanced cellular delivery of cell penetrating peptide-PNA conjugates. FEBS Lett, 580, 1451–1456.PubMedCrossRefGoogle Scholar
  11. 11.
    Nishiyama, N., Iriyama, A., Jang, W. D., Miyata, K., Itaka, K., Inoue, Y., Takahashi, H., Yanagi, Y., Tamaki, Y., Koyama, H., and Kataoka, K. (2005) Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer. Nat Mater, 12, 934–941.CrossRefGoogle Scholar
  12. 12.
    Cabral, H., Nakanishi, M., Kumagai, M., Jang, W. D., Nishiyama, N., and Kataoka, K. (2008) A photo-activated targeting chemotherapy using glutathione sensitive camptothecin-loaded polymeric micelles. Pharm Res. E-pub.Google Scholar
  13. 13.
    Lai, P. S., Lou, P. J., Peng, C. L., Pai, C. L., Yen, W. N., Huang, M. Y., Young, T. H., and Shieh, M. J. (2007) Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy. J Control Release, 122, 39–46.PubMedCrossRefGoogle Scholar
  14. 14.
    Oliveira, S., Fretz, M. M., Høgset, A., Storm, G., and Schiffelers, R. M. (2007) Photochemical internalization enhances silencing of epidermal growth factor receptor through improved endosomal escape of siRNA. Biochim Biophys Acta, 1768, 1211–1217.PubMedCrossRefGoogle Scholar
  15. 15.
    Selbo, P. K., Sivam, G., Fodstad, O., Sandvig, K., and Berg, K. (2001) In vivo documentation of photochemical internalization, a novel approach to site specific cancer therapy. Int J Cancer, 92, 761–766.PubMedCrossRefGoogle Scholar
  16. 16.
    Ndoye, A., Dolivet, G., Hogset, A., Leroux, A., Fifre, A., Erbacher, P. et al. (2006) Eradication of p53-mutated head and neck squamous cell carcinoma xenografts using nonviral p53 gene therapy and photochemical internalization. Mol Ther, 13, 1156–1162.PubMedCrossRefGoogle Scholar
  17. 17.
    Oliveira, S., Høgset, A., Storm, G., and Schiffelers, R. M. (2008) Delivery of siRNA to the target cell cytoplasm: photochemical internalization facilitates endosomal escape and improves silencing efficiency, in vitro and in vivo. Curr Pharm Des, 14, 3686–3697.PubMedCrossRefGoogle Scholar
  18. 18.
    Berg, K., Dietze, A., Kaalhus, O., and Høgset, A. (2005) Site-specific drug delivery by photochemical internalization enhances the antitumor effect of bleomycin. Clin Cancer Res, 11, 8476–8485.PubMedCrossRefGoogle Scholar
  19. 19.
    Prasmickaite, L., Høgset, A., Tjelle, T. E., Olsen, V. M., and Berg, K. (2000) Role of endosomes in gene transfection mediated by photochemical internalisation (PCI). J Gene Med, 2, 477–488.PubMedCrossRefGoogle Scholar
  20. 20.
    Kloeckner, J., Prasmickaite, L., Høgset, A., Berg, K., and Wagner, E. (2004) Photochemically enhanced gene delivery of EGF receptor-targeted DNA polyplexes. J Drug Target, 12, 205–213.PubMedCrossRefGoogle Scholar
  21. 21.
    Zou, S. M., Erbacher, P., Remy, J. S., and Behr, J. P. (2000) Systemic linear polyethylenimine (L-PEI)-mediated gene delivery in the mouse. J Gene Med, 2, 128–134.PubMedCrossRefGoogle Scholar
  22. 22.
    Brissault, B., Kichler, A., Guis, C., Leborgne, C., Danos, O., and Cheradame, H. (2003) Synthesis of linear polyethylenimine derivatives for DNA transfection. Bioconjug Chem, 14, 581–587.PubMedCrossRefGoogle Scholar
  23. 23.
    Thomas, M., Lu, J. J., Ge, Q., Zhang, C., Chen, J., and Klibanov, A. M. (2005) Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc Natl Acad Sci USA, 102, 5679–5684.PubMedCrossRefGoogle Scholar
  24. 24.
    Green, M. (1990) Avidin and streptavidin. Methods Enzymol, 184, 51–67.PubMedCrossRefGoogle Scholar
  25. 25.
    Plank, C., Zatloukal, K., Cotton, M., Mechtler, K., and Wagner, E. (1992) Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand. Bioconjug Chem, 3, 533–539.PubMedCrossRefGoogle Scholar
  26. 26.
    Boe, S., Longva, A. Sa. nd, and Hovig, E. (2008) Evaluation of various polyethylenimine formulations for light-controlled gene silencing using small interfering RNA molecules. Oligonucleotides, 18, 123–132.Google Scholar
  27. 27.
    Berg, K., Folini, M., Prasmickaite, L., Selbo, P. K., Bonsted, A., Engesaeter, B. Ø., Zaffaroni, N., Weyergang, A., Dietze, A., Maelandsmo, G. M., Wagner, E., Norum, O. J., and Høgset, A. (2007) Photochemical internalization: a new tool for drug delivery. Curr Pharm Biotechnol, 8, 362–372.PubMedCrossRefGoogle Scholar
  28. 28.
    Prasmickaite, L., Høgset, A., Selbo, P. K., Engesæter, B. Ø., Hellum, M., and Berg, K. (2002) Photochemical disruption of endocytic vesicles before delivery of drugs: a new strategy for cancer therapy. Br J Cancer, 86, 652–657.PubMedCrossRefGoogle Scholar
  29. 29.
    Weyergang, A., Selbo, P. K., and Berg, K. (2006) Photochemically stimulated drug delivery increases the cytotoxicity and specificity of EGF–saporin. J Control Release, 111, 165–173.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kristian Berg
    • 1
  • Anette Weyergang
    • 1
  • Lina Prasmickaite
    • 1
  • Anette Bonsted
    • 1
  • Anders Høgset
    • 2
  • Marie-Therese R. Strand
    • 1
  • Ernst Wagner
    • 3
  • Pål K. Selbo
    • 1
  1. 1.Department of Radiation BiologyInstitute for Cancer Research, The Norwegian Radium HospitalMontebello, OsloNorway
  2. 2.PCI Biotech ASOsloNorway
  3. 3.Pharmaceutical Biology-Biotechnology, Department of PharmacyLudwig-Maximilians-UniversitaetMunichGermany

Personalised recommendations