Advertisement

Isolation Procedure and Characterization of Multipotent Adult Progenitor Cells from Rat Bone Marrow

  • Kartik Subramanian
  • Martine Geraerts
  • Karen A. Pauwelyn
  • Yonsil Park
  • D. Jason Owens
  • Manja Muijtjens
  • Fernando Ulloa-Montoya
  • Yeuhua Jiang
  • Catherine M. VerfaillieEmail author
  • Wei-Shou Hu
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 636)

Abstract

Multipotent adult progenitor cells (MAPCs) are adult stem cells derived from the bone marrow of mouse and rat and were described for the first time in 2002 (Jiang et al., Nature 418:41-49, 2002), and subsequently (Breyer et al., Exp Hematol 34:1596-1601, 2006; Jiang et al., Exp Hematol 30:896-904, 2002; Ulloa-Montoya et al., Genome Biol 8:R163, 2007). The capacity of rodent MAPC to differentiate at the single-cell level into some of the cell types of endoderm, mesoderm, and neuroectoderm germ layer lineages makes them promising candidates for the study of developmental processes. MAPC are isolated using adherent cell cultures and are selected based on morphology after a period of about 8–18 weeks. Here, we describe a step-by-step reproducible method to isolate rat MAPC from fetal and adult bone marrow. We elaborate on several aspects of the isolation protocol including, cell density and medium components, and methods for selecting and obtaining potential MAPC clones and their characterization.

Key words

Adult stem cells Bone marrow Pluripotency Differentiation 

Notes

Acknowledgments

The authors would like to thank Dr Hirsch and LeAnn Oseth of the University of Minnesota cytogenetics core facility for accurate performance and analysis of G-banding experiments. Tine Decuyper, Sarah Mertens, Nathalie Feyaerts, Annelies Deman, April Breyer, Tineke Notelaers, Pieter Berckmans, and Sumitha Jacob are acknowledged for their excellent technical support with cell culture, stainings and qRT-PCR. Vick Vanduppen is acknowledged for his FACS support. This work was supported by grants to CMV: NIH-T15 HL076653, KUL CoE, FWO Odysseus Fund; FP6-STREP: STROKEMAP. KS was funded by Doctoral dissertation fellowship (DDF), Graduate School, University of Minnesota. MG was funded by FWO; DJO was supported by the NIH biotechnology Training Grant (GM08347); KP was funded by the FWO, BAEF, and VVGE.

References

  1. 1.
    Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., et al. (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 418, 41–49.CrossRefPubMedGoogle Scholar
  2. 2.
    Jiang, Y., Vaessen, B., Lenvik, T., Blackstad, M., Reyes, M. and Verfaillie, C. M. (2002) Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp. Hematol. 30, 896–904.CrossRefPubMedGoogle Scholar
  3. 3.
    Luttun, A., Ross, J. J., Verfaillie, C., Aranguren, X. L. and Prosper, F. (2006) Differentiation of multipotent adult progenitor cells into functional endothelial and smooth muscle cells. Curr. Protoc. Immunol. Chapter 22 , Unit 22F 29.Google Scholar
  4. 4.
    Aranguren, X. L., McCue, J. D., Hendrickx, B., Zhu, X. H., Du, F., Chen, E., et al. (2008) Multipotent adult progenitor cells sustain function of ischemic limbs in mice. J. Clin. Invest. 118, 505–514.PubMedGoogle Scholar
  5. 5.
    Serafini, M., Dylla, S. J., Oki, M., Heremans, Y., Tolar, J., Jiang, Y., et al. (2007) Hematopoietic reconstitution by multipotent adult progenitor cells: precursors to long-term hematopoietic stem cells. J. Exp. Med. 204, 129–139.CrossRefPubMedGoogle Scholar
  6. 6.
    Yoon, Y. S., Wecker, A., Heyd, L., Park, J. S., Tkebuchava, T., Kusano, K., et al. (2005) Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J. Clin. Invest. 115, 326–338.PubMedGoogle Scholar
  7. 7.
    D’Ippolito, G., Diabira, S., Howard, G. A., Menei, P., Roos, B. A. and Schiller, P. C. (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J. Cell Sci. 117, 2971–2981.CrossRefPubMedGoogle Scholar
  8. 8.
    Anjos-Afonso, F. and Bonnet, D. (2007) Nonhematopoietic/endothelial SSEA-1+ cells define the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood. 109, 1298–1306.CrossRefPubMedGoogle Scholar
  9. 9.
    Kogler, G., Sensken, S., Airey, J. A., Trapp, T., Muschen, M., Feldhahn, N., et al. (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J. Exp. Med. 200, 123–135.CrossRefPubMedGoogle Scholar
  10. 10.
    Kucia, M., Halasa, M., Wysoczynski, M., Baskiewicz-Masiuk, M., Moldenhawer, S., Zuba-Surma, E., et al. (2007) Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia. 21, 297–303.CrossRefPubMedGoogle Scholar
  11. 11.
    Kucia, M., Reca, R., Campbell, F. R., Zuba-Surma, E., Majka, M., Ratajczak, J., et al. (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia. 20, 857–869.CrossRefPubMedGoogle Scholar
  12. 12.
    De Coppi, P., Bartsch, G., Jr., Siddiqui, M. M., Xu, T., Santos, C. C., Perin, L., et al. (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 25, 100–106.CrossRefPubMedGoogle Scholar
  13. 13.
    Beltrami, A. P., Cesselli, D., Bergamin, N., Marcon, P., Rigo, S., Puppato, E., et al. (2007) Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow). Blood. 110, 3438–3446.CrossRefPubMedGoogle Scholar
  14. 14.
    Ulloa-Montoya, F., Kidder, B. L., Pauwelyn, K. A., Chase, L. G., Luttun, A., Crabbe, A., et al. (2007) Comparative transcriptome analysis of embryonic and adult stem cells with extended and limited differentiation capacity. Genome Biol. 8, R163.CrossRefPubMedGoogle Scholar
  15. 15.
    Jiang, Y., Henderson, D., Blackstad, M., Chen, A., Miller, R. F. and Verfaillie, C. M. (2003) Neuroectodermal differentiation from mouse multipotent adult progenitor cells. Proc Natl Acad Sci U S A. 100 Suppl 1, 11854-11860.CrossRefPubMedGoogle Scholar
  16. 16.
    Breyer, A., Estharabadi, N., Oki, M., Ulloa, F., Nelson-Holte, M., Lien, L., et al. (2006) Multipotent adult progenitor cell isolation and culture procedures. Exp. Hematol. 34, 1596–1601.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kartik Subramanian
    • 1
  • Martine Geraerts
    • 2
  • Karen A. Pauwelyn
    • 2
  • Yonsil Park
    • 3
  • D. Jason Owens
    • 1
  • Manja Muijtjens
    • 2
  • Fernando Ulloa-Montoya
    • 2
    • 1
  • Yeuhua Jiang
    • 2
  • Catherine M. Verfaillie
    • 2
    Email author
  • Wei-Shou Hu
    • 2
  1. 1.Stem Cell Institute and Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisUSA
  2. 2.Stem Cell Institute Leuven, Catholic University of LeuvenLeuvenBelgium
  3. 3.Department of Chemical Engineering and Materials Science and Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations