Adult Cell Fate Reprogramming: Converting Liver to Pancreas

  • Irit Meivar-Levy
  • Sarah Ferber
Part of the Methods in Molecular Biology book series (MIMB, volume 636)


Regenerative medicine aims at producing new cells for repair or replacement of diseased and damaged tissues. Embryonic and adult stem cells have been suggested as attractive sources of cells for generating the new cells needed. The leading dogma was that adult cells in mammals, once committed to a specific lineage, become “terminally differentiated” and can no longer change their fate. However, in recent years increasing evidence has accumulated demonstrating the remarkable ability of some differentiated cells to be converted into a different cell type via a process termed developmental redirection or adult cells reprogramming. For example, abundant human cell types, such as dermal fibroblasts and adipocytes, could potentially be harvested and converted into other, medically important cell types, such as neurons, cardiomyocytes, or pancreatic β cells. In this chapter, we describe a method of activating the pancreatic lineage and β-cells function in adult human liver cells by ectopic expression of pancreatic transcription factors. This approach aims to generate custom-made autologous surrogate β cells for treatment of diabetes, and possibly bypass both the shortage of cadaveric human donor tissues and the need for life-long immune-suppression.

Key words

Liver Pancreas Beta-cells Transcription factors Adult cells reprogramming Insulin production and secretion Transdifferentiation 


  1. 1.
    Ferber, S., Halkin, A., Cohen, H., Ber, I., Einav, Y., Goldberg, I., Barshack, I., Seijffers, R., Kopolovic, J., Kaiser, N., and Karasik, A. (2000) Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med 6, 568–72.CrossRefPubMedGoogle Scholar
  2. 2.
    Ber, I., Shternhall, K., Perl, S., Ohanuna, Z., Goldberg, I., Barshack, I., Benvenisti-Zarum, L., Meivar-Levy, I., and Ferber, S. (2003) Functional, persistent, and extended liver to pancreas transdifferentiation. J Biol Chem 278, 31950–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Sapir, T., Shternhall, K., Meivar-Levy, I., Blumenfeld, T., Cohen, H., Skutelsky, E., Eventov-Friedman, S., Barshack, I., Goldberg, I., Pri-Chen, S., Ben-Dor, L., Polak-Charcon, S., Karasik, A., Shimon, I., Mor, E., and Ferber, S. (2005) Cell-replacement therapy for diabetes: generating functional insulin-producing tissue from adult human liver cells. Proc Natl Acad Sci U S A 102, 7964–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Shternhall-Ron, K., Quintana, F. J., Perl, S., Meivar-Levy, I., Barshack, I., Cohen, I. R., and Ferber, S. (2007) Ectopic PDX-1 expression in liver ameliorates type 1 diabetes. J Autoimmun 28, 134–42.CrossRefPubMedGoogle Scholar
  5. 5.
    Meivar-Levy, I., Sapir, T., Gefen-Halevi, S., Aviv, V., Barshack, I., Onaca, N., Mor, E., and Ferber, S. (2007) Pancreatic and duodenal homeobox gene 1 induces hepatic dedifferentiation by suppressing the expression of CCAAT/enhancer-binding protein beta. Hepatology 46, 898–905.CrossRefPubMedGoogle Scholar
  6. 6.
    Meivar-Levy, I., and Ferber, S. (2006) Regenerative medicine: using liver to generate pancreas for treating diabetes. Isr Med Assoc J. 8, 430–4.PubMedGoogle Scholar
  7. 7.
    Meivar-Levy, I., and Ferber, S. (2003) New organs from our own tissues: liver-to-pancreas transdifferentiation. Trends Endocrinol Metab 14, 460–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Cao, L. Z., Tang, D. Q., Horb, M. E., Li, S. W., and Yang, L. J. (2004) High glucose is necessary for complete maturation of Pdx1-VP16-expressing hepatic cells into functional insulin-producing cells. Diabetes 53, 3168–78.CrossRefPubMedGoogle Scholar
  9. 9.
    Horb, M. E., Shen, C. N., Tosh, D., and Slack, J. M. (2003) Experimental conversion of liver to pancreas. Curr Biol 13, 105–15.CrossRefPubMedGoogle Scholar
  10. 10.
    Imai, J., Katagiri, H., Yamada, T., Ishigaki, Y., Ogihara, T., Uno, K., Hasegawa, Y., Gao, J., Ishihara, H., Sasano, H., Mizuguchi, H., Asano, T., and Oka, Y. (2005) Constitutively active PDX1 induced efficient insulin production in adult murine liver. Biochem Biophys Res Commun 326, 402–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Kaneto, H., Matsuoka, T. A., Nakatani, Y., Miyatsuka, T., Matsuhisa, M., Hori, M., and Yamasaki, Y. (2005) A crucial role of MafA as a novel therapeutic target for diabetes. J Biol Chem 280, 15047–52.CrossRefPubMedGoogle Scholar
  12. 12.
    Kaneto, H., Nakatani, Y., Miyatsuka, T., Matsuoka, T. A., Matsuhisa, M., Hori, M., and Yamasaki, Y. (2005) PDX-1/VP16 fusion protein, together with NeuroD or Ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance. Diabetes 54, 1009–22.CrossRefPubMedGoogle Scholar
  13. 13.
    Kojima, H., Fujimiya, M., Matsumura, K., Younan, P., Imaeda, H., Maeda, M., and Chan, L. (2003) NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nat Med 9, 596–603.CrossRefPubMedGoogle Scholar
  14. 14.
    Li, W. C., Horb, M. E., Tosh, D., and Slack, J. M. (2005) In vitro transdifferentiation of hepatoma cells into functional pancreatic cells. Mech Dev 122, 835–47.CrossRefPubMedGoogle Scholar
  15. 15.
    Miyatsuka, T., Kaneto, H., Kajimoto, Y., Hirota, S., Arakawa, Y., Fujitani, Y., Umayahara, Y., Watada, H., Yamasaki, Y., Magnuson, M. A., Miyazaki, J., and Hori, M. (2003) Ectopically expressed PDX-1 in liver initiates endocrine and exocrine pancreas differentiation but causes dysmorphogenesis. Biochem Biophys Res Commun 310, 1017–25.CrossRefPubMedGoogle Scholar
  16. 16.
    Zalzman, M., Gupta, S., Giri, R. K., Berkovich, I., Sappal, B. S., Karnieli, O., Zern, M. A., Fleischer, N., and Efrat, S. (2003) Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells. Proc Natl Acad Sci U S A 100, 7253–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Muniappan, L., and Ozcan, S. (2007) Induction of insulin secretion in engineered liver cells by nitric oxide. BMC Physiol 7, 11.CrossRefPubMedGoogle Scholar
  18. 18.
    Jin, C. X., Li, W. L., Xu, F., Geng, Z. H., He, Z. Y., Su, J., Tao, X. R., Ding, X. Y., Wang, X., and Hu, Y. P. (2008) Conversion of immortal liver progenitor cells into pancreatic endocrine progenitor cells by persistent expression of Pdx-1. J Cell Biochem 104(1), 224–36. CrossRefPubMedGoogle Scholar
  19. 19.
    Wang, A. Y., Ehrhardt, A., Xu, H., and Kay, M. A. (2007) Adenovirus transduction is required for the correction of diabetes using Pdx-1 or Neurogenin-3 in the liver. Mol Ther 15, 255–63.CrossRefPubMedGoogle Scholar
  20. 20.
    Yatoh, S., Akashi, T., Chan, P. P., Kaneto, H., Sharma, A., Bonner-Weir, S., and Weir, G. C. (2007) NeuroD and reaggregation induce beta-cell specific gene expression in cultured hepatocytes. Diabetes Metab Res Rev 23(3), 239–49CrossRefPubMedGoogle Scholar
  21. 21.
    Yamada, S., Yamamoto, Y., Nagasawa, M., Hara, A., Kodera, T., and Kojima, I. (2006) In vitro transdifferentiation of mature hepatocytes into insulin-producing cells. Endocr J 53, 789–95.CrossRefPubMedGoogle Scholar
  22. 22.
    Fodor, A., Harel, C., Fodor, L., Armoni, M., Salmon, P., Trono, D., and Karnieli, E. (2007) Adult rat liver cells transdifferentiated with lentiviral IPF1 vectors reverse diabetes in mice: an ex vivo gene therapy approach. Diabetologia 50, 121–30.CrossRefPubMedGoogle Scholar
  23. 23.
    Song, Y. D., Lee, E. J., Yashar, P., Pfaff, L. E., Kim, S. Y., and Jameson, J. L. (2007) Islet cell differentiation in liver by combinatorial expression of transcription factors neurogenin-3, BETA2, and RIPE3b1. Biochem Biophys Res Commun 354, 334–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Tang, D. Q., Cao, L. Z., Chou, W., Shun, L., Farag, C., Atkinson, M. A., Li, S. W., Chang, L. J., and Yang, L. J. (2006) Role of Pax4 in Pdx1-VP16-mediated liver-to-endocrine pancreas transdifferentiation. Lab Invest 86, 829–41.CrossRefPubMedGoogle Scholar
  25. 25.
    Tang, D. Q., Lu, S., Sun, Y. P., Rodrigues, E., Chou, W., Yang, C., Cao, L. Z., Chang, L. J., and Yang, L. J. (2006) Reprogramming liver-stem WB cells into functional insulin-producing cells by persistent expression of Pdx1- and Pdx1-VP16 mediated by lentiviral vectors. Lab Invest 86, 83–93.CrossRefPubMedGoogle Scholar
  26. 26.
    Zalzman, M., Anker-Kitai, L., and Efrat, S. (2005) Differentiation of human liver-derived, insulin-producing cells toward the beta-cell phenotype. Diabetes 54, 2568–75.CrossRefPubMedGoogle Scholar
  27. 27.
    Koizumi, M., Doi, R., Toyoda, E., Tulachan, S. S., Kami, K., Mori, T., Ito, D., Kawaguchi, Y., Fujimoto, K., Gittes, G. K., and Imamura, M. (2004) Hepatic regeneration and enforced PDX-1 expression accelerate transdifferentiation in liver. Surgery 136, 449–57.CrossRefPubMedGoogle Scholar
  28. 28.
    Nakajima-Nagata, N., Sakurai, T., Mitaka, T., Katakai, T., Yamato, E., Miyazaki, J., Tabata, Y., Sugai, M., and Shimizu, A. (2004) In vitro induction of adult hepatic progenitor cells into insulin-producing cells. Biochem Biophys Res Commun 318, 625–30.CrossRefPubMedGoogle Scholar
  29. 29.
    Ferber, S. (2000) Can we create new organs from our own tissues? Isr Med Assoc J 2, 32–6.PubMedGoogle Scholar
  30. 30.
    Tang, D. Q., Cao, L. Z., Chou, W., Shun, L., Farag, C., Atkinson, M. A., Li, S. W., Chang, L. J., Yang, L. J., Lu, S., Sun, Y. P., Rodrigues, E., and Yang, C. (2006) Role of Pax4 in Pdx1-VP16-mediated liver-to-endocrine pancreas transdifferentiation. Lab Invest 86, 829–41.CrossRefPubMedGoogle Scholar
  31. 31.
    Breyer, B., Jiang, W., Cheng, H., Zhou, L., Paul, R., Feng, T., and He, T. C. (2001) Adenoviral vector-mediated gene transfer for human gene therapy. Curr Gene Ther 1, 149–62.CrossRefPubMedGoogle Scholar
  32. 32.
    Lai, C. M., Lai, Y. K., and Rakoczy, P. E. (2002) Adenovirus and adeno-associated virus vectors. DNA Cell Biol 21, 895–913.CrossRefPubMedGoogle Scholar
  33. 33.
    Vorburger, S. A., and Hunt, K. K. (2002) Adenoviral gene therapy.Oncologist 7, 46–59.CrossRefPubMedGoogle Scholar
  34. 34.
    Becker, T. C., Noel, R. J., Coats, W. S., Gomez-Foix, A. M., Alam, T., Gerard, R. D., and Newgard, C. B. (1994) Use of recombinant adenovirus for metabolic engineering of mammalian cells. Methods Cell Biol 43, 161-89.CrossRefPubMedGoogle Scholar
  35. 35.
    He, T. C., Zhou, S., da Costa, L. T., Yu, J., Kinzler, K. W., and Vogelstein, B. (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 95, 2509–14.CrossRefPubMedGoogle Scholar
  36. 36.
    Morral, N., O’Neal, W., Rice, K., Leland, M., Kaplan, J., Piedra, P. A., Zhou, H., Parks, R. J., Velji, R., Aguilar-Cordova, E., Wadsworth, S., Graham, F. L., Kochanek, S., Carey, K. D., and Beaudet, A. L. (1999) Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons. Proc Natl Acad Sci U S A 96, 12816–21.CrossRefPubMedGoogle Scholar
  37. 37.
    LaBarre, D. D., and Lowy, R. J. (2001) Improvements in methods for calculating virus titer estimates from TCID50 and plaque assays. J Virol Methods 96, 107–26.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Irit Meivar-Levy
    • 1
    • 2
  • Sarah Ferber
    • 3
    • 2
  1. 1.Sheba Medical Center, Endocrine InstituteTel-HashomerIsrael
  2. 2.Department of Human Genetics and Molecular MedicineSackler School of Medicine, Tel-Aviv UniversityTel-AvivIsrael
  3. 3.Endocrine Institute, Sheba Medical CenterTel-HashomerIsrael

Personalised recommendations