Hepatocytes pp 261-272 | Cite as

The HepaRG Cell Line: Biological Properties and Relevance as a Tool for Cell Biology, Drug Metabolism, and Virology Studies

  • Marie-Jeanne MarionEmail author
  • Olivier Hantz
  • David Durantel
Part of the Methods in Molecular Biology book series (MIMB, volume 640)


Liver progenitor cells may play an important role in carcinogenesis in vivo and represent therefore useful cellular materials for in vitro studies. The HepaRG cell line, which is a human bipotent progenitor cell line capable to differentiate toward two different cell phenotypes (i.e., biliary-like and hepatocyte-like cells), has been established from a liver tumor associated with chronic hepatitis C. This cell line represents a valuable alternative to ex vivo cultivated primary human hepatocytes (PHH), as HepaRG cells share some features and properties with adult hepatocytes. The cell line is particularly useful to evaluate drugs and perform drug metabolism studies, as many detoxifying enzymes are expressed and functional. It is also an interesting tool to study some aspect of progenitor biology (e.g., differentiation process), carcinogenesis, and the infection by some pathogens for which the cell line is permissive (e.g., HBV infection). Overall, this chapter gives a concise overview of the biological properties and potential applications of this cell line.

Key words

Liver progenitor carcinogenesis differentiation drug metabolism HBV cellular innate antiviral response 


  1. 1.
    Gripon, P., Rumin, S., Urban, S., Le Seyec, J., Glaise, D., Cannie, I. et al. (2002) Infection of a human hepatoma cell line by hepatitis B virus. Proc. Natl. Acad. Sci. USA 99, 15655–15660.PubMedCrossRefGoogle Scholar
  2. 2.
    Parent, R., Marion, M.-J., Furio, L., Trepo, C., and Petit, M.A. (2004) Origin and characterization of a human bipotent liver progenitor cell line. Gastroenterology 126, 1147–1156.PubMedCrossRefGoogle Scholar
  3. 3.
    Cerec, V., Glaise, D., Garnier, D., Morosan, S., Turlin, B., Drenou, B. et al. (2007) Transdifferentiation of hepatocyte-like cells from the human hepatoma HepaRG cell line through bipotent progenitor. Hepatology 45, 957–967.PubMedCrossRefGoogle Scholar
  4. 4.
    Aninat, C., Piton, A., Glaise, D., Le Charpentier, T., Langouet, S., Morel, F. et al. (2006) Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells. Drug Metab. Dispos. 34, 75–83.PubMedCrossRefGoogle Scholar
  5. 5.
    Parent, R. and Beretta, L. (2008) Translational control plays a prominent role in the hepatocytic differentiation of HepaRG liver progenitor cells. Genome Biol. 9, R19.PubMedCrossRefGoogle Scholar
  6. 6.
    Parent, R., Kolippakkam, D., Booth, G., and Beretta, L. (2007) Mammalian target of rapamycin activation impairs hepatocytic differentiation and targets genes moderating lipid homeostasis and hepatocellular growth. Cancer Res. 67, 4337–4345.PubMedCrossRefGoogle Scholar
  7. 7.
    Troadec, M.B., Glaise, D., Lamirault, G., Le Cunff, M., Guerin, E., Le Meur, N. et al. (2006) Hepatocyte iron loading capacity is associated with differentiation and repression of motility in the HepaRG cell line. Genomics 87, 93–103.PubMedCrossRefGoogle Scholar
  8. 8.
    Aninat, C., Seguin, P., Descheemaeker, P.N., Morel, F., Malledant, Y., and Guillouzo, A. (2008) Catecholamines induce an inflammatory response in human hepatocytes. Crit. Care Med. 36, 848–854.PubMedCrossRefGoogle Scholar
  9. 9.
    Antoun, J., Amet, Y., Simon, B., Dreano, Y., Corlu, A., Corcos, L. et al. (2006) CYP4A11 is repressed by retinoic acid in human liver cells. FEBS Lett. 580, 3361–3367.PubMedCrossRefGoogle Scholar
  10. 10.
    Antoun, J., Goulitquer, S., Amet, Y., Dreano, Y., Salaun, J.-P., Corcos, L. et al. (2008) CYP4F3B is induced by PGA1 in human liver cells: a regulation of the 20-HETE synthesis. J. Lipid Res. 49, 2135–2141.PubMedCrossRefGoogle Scholar
  11. 11.
    Josse, R., Aninat, C., Glaise, D., Dumont, J., Fessard, V., Morel, F. et al. (2008) Long-term functional stability of human HepaRG hepatocytes and use for chronic toxicity and genotoxicity studies. Drug Metab. Dispos. 36, 1111–1118.PubMedCrossRefGoogle Scholar
  12. 12.
    Kanebratt, K.P. and Andersson, T.B. (2008) Evaluation of HepaRG cells as an in vitro model for human drug metabolism studies. Drug Metab. Dispos. 36, 1444–1452.PubMedCrossRefGoogle Scholar
  13. 13.
    Kanebratt, K.P. and Andersson, T.B. (2008) HepaRG cells as an in vitro model for evaluation of cytochrome P450 induction in humans. Drug Metab. Dispos. 36, 137–145.PubMedCrossRefGoogle Scholar
  14. 14.
    Le Vee, M., Jigorel, E., Glaise, D., Gripon, P., Guguen-Guillouzo, C., and Fardel, O. (2006) Functional expression of sinusoidal and canalicular hepatic drug transporters in the differentiated human hepatoma HepaRG cell line. Eur. J. Pharm. Sci. 28, 109–117.PubMedCrossRefGoogle Scholar
  15. 15.
    Guillouzo, A., Corlu, A., Aninat, C., Glaise, D., Morel, F., and Guguen-Guillouzo, C. (2007) The human hepatoma HepaRG cells: a highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. Chem. Biol. Interact. 168, 66–73.PubMedCrossRefGoogle Scholar
  16. 16.
    Guillouzo, A. and Guguen-Guillouzo, C. (2008) Evolving concepts in liver tissue modeling and implications for in vitro toxicology. Expert Opin. Drug Metab. Toxicol. 4, 1279–1294.PubMedCrossRefGoogle Scholar
  17. 17.
    Lambert, C.B., Spire, C., Renaud, M.P., Claude, N., and Guillouzo, A. (2009) Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol. In Vitro 23, 466–475.PubMedCrossRefGoogle Scholar
  18. 18.
    Sells, M.A., Chen, M.L., and Acs, G. (1987) Production of hepatitis B virus particles in Hep G2 cells transfected with cloned hepatitis B virus DNA. Proc. Natl. Acad. Sci. USA 184, 1005–1009.CrossRefGoogle Scholar
  19. 19.
    Shih, C.H., Li, L.S., Roychoudhury, S., and Ho, M.H. (1989) In vitro propagation of human hepatitis B virus in a rat hepatoma cell line. Proc. Natl. Acad. Sci. USA 86, 6323–6327.PubMedCrossRefGoogle Scholar
  20. 20.
    Gripon, P., Diot, C., Theze, N., Fourel, I., Loreal, O., Brechot, C. et al. (1988) Hepatitis B virus infection of adult human hepatocytes cultured in the presence of dimethyl sulfoxide. J. Virol. 62, 4136–4143.PubMedGoogle Scholar
  21. 21.
    Kock, J., Nassal, M., McNelly, S., Baumert, T.F., Blum, H.E., and von Weizsacker, F. (2001) Efficient infection of primary tupaia hepatocytes with purified human and woolly monkey hepatitis B virus. J. Virol. 75, 5084–5089.PubMedCrossRefGoogle Scholar
  22. 22.
    Hantz, O., Parent, R., Durantel, D., Gripon, P., Guguen-Guillouzo, C., and Zoulim, F. (2009) Persistence of the hepatitis B virus covalently closed circular DNA in HepaRG human hepatocyte-like cells. J. Gen. Virol. 90, 127–135.PubMedCrossRefGoogle Scholar
  23. 23.
    Gripon, P., Diot, C., and Guguen-Guillouzo, C. (1993) Reproducible high level infection of cultured adult human hepatocytes by hepatitis B virus: effect of polyethylene glycol on adsorption and penetration. Virology 192, 534–540.PubMedCrossRefGoogle Scholar
  24. 24.
    Tang, H. and McLachlan, A. (2002) Avian and Mammalian hepadnaviruses have distinct transcription factor requirements for viral replication. J. Virol. 76, 7468–7472.PubMedCrossRefGoogle Scholar
  25. 25.
    Tang, H. and McLachlan, A. (2001) Transcriptional regulation of hepatitis B virus by nuclear hormone receptors is a critical determinant of viral tropism. Proc. Natl. Acad. Sci. USA 98, 1841–1846.PubMedCrossRefGoogle Scholar
  26. 26.
    Glebe, D. and Urban, S. (2007) Viral and cellular determinants involved in hepadnaviral entry. World J. Gastroenterol. 13, 22–38.PubMedGoogle Scholar
  27. 27.
    Engelke, M., Mills, K., Seitz, S., Simon, P., Gripon, P., Schnolzer, M. et al. (2006) Characterization of a hepatitis B and hepatitis delta virus receptor binding site. Hepatology 43, 750–760.PubMedCrossRefGoogle Scholar
  28. 28.
    Jaoude, G.A. and Sureau, C. (2005) Role of the antigenic loop of the hepatitis B virus envelope proteins in infectivity of hepatitis delta virus. J. Virol. 79, 10460–10466.PubMedCrossRefGoogle Scholar
  29. 29.
    Blanchet, M. and Sureau, C. (2006) Analysis of the cytosolic domains of the hepatitis B virus envelope proteins for their function in viral particle assembly and infectivity. J. Virol. 80, 11935–11945.PubMedCrossRefGoogle Scholar
  30. 30.
    Abou-Jaoude, G. and Sureau, C. (2007) Entry of hepatitis delta virus requires the conserved cysteine residues of the hepatitis B virus envelope protein antigenic loop and is blocked by inhibitors of thiol-disulfide exchange. J. Virol. 81, 13057–13066.PubMedCrossRefGoogle Scholar
  31. 31.
    Gripon, P., Cannie, I., and Urban, S. (2005) Efficient inhibition of hepatitis B virus infection by acylated peptides derived from the large viral surface protein. J. Virol. 79, 1613–1622.PubMedCrossRefGoogle Scholar
  32. 32.
    Petersen, J., Dandri, M., Mier, W., Lutgehetmann, M., Volz, T., von Weizsacker, F. et al. (2008) Prevention of hepatitis B virus infection in vivo by entry inhibitors derived from the large envelope protein. Nat. Biotechnol. 26, 335–341.PubMedCrossRefGoogle Scholar
  33. 33.
    Tuttleman, J.S., Pourcel, C., and Summers, J.W. (1990) Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells. Cell 47, 451–460.CrossRefGoogle Scholar
  34. 34.
    Summers, J.W., Smith, P.M., and Horwich, A.L. (1990) Hepadnavirus envelope proteins regulate covalently closed circular DNA amplification. J. Virol. 64, 2819–2824.PubMedGoogle Scholar
  35. 35.
    Summers, J., Smith, P.M., Huang, M., and Yu, M. (1991) Morphogenetic and regulatory effects of mutations in the envelope proteins of an avian hepadnavirus. J. Virol. 65, 1310–1317.PubMedGoogle Scholar
  36. 36.
    Borel, C., Schorr, O., Durand, I., Zoulim, F., Kay, A., Trepo, C. et al. (2001) Initial amplification of duck hepatitis B virus covalently closed circular DNA after in vitro infection of embryonic duck hepatocytes is increased by cell cycle progression. Hepatology 34, 168–179.PubMedCrossRefGoogle Scholar
  37. 37.
    Zoulim, F. (2006) Antiviral therapy of chronic hepatitis B. Antiviral Res. 71, 206–215.PubMedCrossRefGoogle Scholar
  38. 38.
    Villet, S., Billioud, G., Pichoud, C., Lucifora, J., Hantz, O., Sureau, C. et al. (2009) In vitro characterization of viral fitness of therapy-resistant hepatitis B variants. Gastroenterology 136, 168–176.PubMedCrossRefGoogle Scholar
  39. 39.
    Maire, M., Parent, R., Morand, A-L., Alotte, C., Trepo, C., Durantel, D. et al. (2008) Characterization of the double-stranded RNA responses in human liver progenitor cells. Biochem. Biophys. Res. Commun. 368, 556–562.PubMedCrossRefGoogle Scholar
  40. 40.
    Apostolou, E. and Thanos, D. (2008) Virus Infection Induces NF-kappaB-dependent interchromosomal associations mediating monoallelic IFN-beta gene expression. Cell 134, 85–96.PubMedCrossRefGoogle Scholar
  41. 41.
    Lucifora, J., Durantel, D., Belloni, L., Barraud, L., Villet, S., Vincent, I.E. et al. (2008) Initiation of hepatitis B virus genome replication and production of infectious virus following delivery in HepG2 cells by novel recombinant baculovirus vector. J. Gen. Virol. 89, 1819–1828.PubMedCrossRefGoogle Scholar
  42. 42.
    Lucifora, J., Durantel, D., Testoni, B., Hantz, O., Levrero, M., and Zoulim, F. (2010) Control of hepatitis B virus replication by inmate response of HepaRG cells. Hepatology 51, 63–72.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Marie-Jeanne Marion
    • 1
    • 2
    Email author
  • Olivier Hantz
    • 1
    • 2
  • David Durantel
    • 1
    • 2
    • 3
  1. 1.INSERM U871Molecular physiopathology and new treatments of viral hepatitisLyonFrance
  2. 2.Université de Lyon, and IFR62LyonFrance
  3. 3.Hospices Civils de Lyon (HCL)LyonFrance

Personalised recommendations