General Review on In Vitro Hepatocyte Models and Their Applications

Part of the Methods in Molecular Biology book series (MIMB, volume 640)


In vitro hepatocyte models represent very useful systems in both fundamental research and various application areas. Primary hepatocytes appear as the closest model for the liver in vivo. However, they are phenotypically unstable, have a limited life span and in addition, exhibit large interdonor variability when of human origin. Hepatoma cell lines appear as an alternative but only the HepaRG cell line exhibits various functions, including major cytochrome P450 activities, at levels close to those found in primary hepatocytes. In vitro hepatocyte models have brought a substantial contribution to the understanding of the biochemistry, physiology, and cell biology of the normal and diseased liver and in various application domains such as xenobiotic metabolism and toxicity, virology, parasitology, and more generally cell therapies. In the future, new well-differentiated hepatocyte cell lines derived from tumors or from either embryonic or adult stem cells might be expected and although hepatocytes will continue to be used in various fields, these in vitro liver models should allow marked advances, especially in cell-based therapies and predictive and mechanistic hepatotoxicity of new drugs and other chemicals. All models will benefit from new developments in throughput screening based on cell chips coupled with high-content imaging and in toxicogenomics technologies.

Key words

Hepatocytes liver cell lines HepaRG cells stem cells culture conditions cryopreservation differentiation proliferation bile metabolism xenobiotic metabolism transporters hepatotoxicity toxicotranscriptomics high-content imaging hepatocyte therapies virology parasitology 



We thank Dr. Anne Corlu for Fig. 1.1, Dr. Remi Le Guevel for Fig. 1.2, and Dr. Marie-Anne Robin for critical reading of the manuscript. Our recent work was supported by EEC contracts (LIINTOP-STREP-037499, COMICS-STREP 037575, PREDICT-IV-contract 202222), ANR contract (06SEST17), INCA-Cancéropôle and the Ligue 35 contre le Cancer.


  1. 1.
    Berry, M.N. and Friend, D.S. (1969) High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J. Cell Biol. 43, 506–520.PubMedGoogle Scholar
  2. 2.
    Seglen, P.O. (1972) Preparation of rat liver cells. I. Effect of Ca 2+ on enzymatic dispersion of isolated, perfused liver. Exp. Cell Res. 74, 450–454.PubMedGoogle Scholar
  3. 3.
    Bissell, D.M., Hammaker, L.E., and Meyer, U.A. (1973) Parenchymal cells from adult rat liver in nonproliferating monolayer culture. I. Functional studies. J. Cell Biol. 59, 722–734.PubMedGoogle Scholar
  4. 4.
    Guguen-Guillouzo, C., Campion, J.P., Brissot, P., Glaise, D., Launois, B., Bourel, M., and Guillouzo, A. (1982) High yield preparation of isolated human adult hepatocytes by enzymatic perfusion of the liver. Cell Biol. Int. Rep., 6, 625–628.PubMedGoogle Scholar
  5. 5.
    Guillouzo, A. and Guguen-Guillouzo, C. (eds.) (1986) Isolated and Cultured Hepatocytes, John Libbey Eurotext, Montrouge and Paris.Google Scholar
  6. 6.
    Berry, M.N. and Edwards, A.M. (eds.) (2000) The Hepatocyte Review, Kluwer Academic Publishers, Dordrecht.Google Scholar
  7. 7.
    Waring, J.F., Ciurlionis, R., Jolly, R.A., Heindel, M., Gagne, G., Fagerland, J.A., and Ulrich, R.G. (2003) Isolated human hepatocytes in culture display markedly different gene expression patterns depending on attachment status. Toxicol. In Vitro 17, 693–701.PubMedGoogle Scholar
  8. 8.
    Gebhardt, R., Hengstler, J.G., Muller, D., Glockner, R., Buenning, P., Laube, B., Schmelzer, E., Ullrich, M., Utesch, D., Hewitt, N., Ringel, M., Hilz, B.R., Bader, A., Langsch, A., Koose, T., Burger, H.J., Maas, J., and Oesch, F. (2003) New hepatocyte in vitro systems for drug metabolism: metabolic capacity and recommendations for application in basic research and drug development, standard operation procedures. Drug Metab. Rev. 35, 145–213.PubMedGoogle Scholar
  9. 9.
    Guguen-Guillouzo, C. and Guillouzo, A. (1983) Modulation of functional activities in cultured rat hepatocytes. Mol. Cell Biochem. 53–54, 35–56.PubMedGoogle Scholar
  10. 10.
    Guillouzo, A. (1998) Liver cell models in in vitro toxicology. Environ. Health Perspect. 106 Suppl 2, 511–532.PubMedGoogle Scholar
  11. 11.
    Guillouzo, A. and Guguen-Guillouzo, C. (2008) Evolving concepts in liver tissue modeling and implications for in vitro toxicology. Expert Opin. Drug Metab. Toxicol. 4, 1279–1294.PubMedGoogle Scholar
  12. 12.
    Hewitt, N.J., Lechon, M.J., Houston, J.B., Hallifax, D., Brown, H.S., Maurel, P., Kenna, J.G., Gustavsson, L., Lohmann, C., Skonberg, C., Guillouzo, A., Tuschl, G., Li, A.P., LeCluyse, E., Groothuis, G.M., and Hengstler, J.G. (2007) Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab. Rev. 39, 159–234.PubMedGoogle Scholar
  13. 13.
    Tueschl, G.H.J., Hewitt, P.G., and Mueller S.O. (2007) Application of short- and long-term hepatocyte cultures to predict toxicities, in Hepatotoxicities: From Genomics to in In Vitro and In Vivo Models (Sahu, C.S. ed.), John Wiley & Sons, Chichester UK, pp. 141–174.Google Scholar
  14. 14.
    Isom, H.C., Secott, T., Georgoff, I., Woodworth, C., and Mummaw, J. (1985) Maintenance of differentiated rat hepatocytes in primary culture. Proc. Natl. Acad Sci. U S A. 82, 3252–3256.PubMedGoogle Scholar
  15. 15.
    Henkens, T., Papeleu, P., Elaut, G., Vinken, M., Rogiers, V., and Vanhaecke, T. (2007) Trichostatin A, a critical factor in maintaining the functional differentiation of primary cultured rat hepatocytes. Toxicol. Appl. Pharmacol. 218, 64–71.PubMedGoogle Scholar
  16. 16.
    Ferrini, J.B., Pichard, L., Domergue, J., and Maurel, P. (1997) Long-term primary cultures of adult human hepatocytes. Chem. Biol. Interact. 107, 31–45.PubMedGoogle Scholar
  17. 17.
    Bissell, D.M., Arenson, D.M., Maher, J.J., and Roll, F.J. (1987) Support of cultured hepatocytes by a laminin-rich gel. Evidence for a functionally significant subendothelial matrix in normal rat liver. J. Clin. Invest. 79, 801–12.PubMedGoogle Scholar
  18. 18.
    Dunn, J.C., Yarmush, M.L., Koebe, H.G., and Tompkins, R.G. (1989) Hepatocyte function and extracellular matrix geometry: long-term culture in a sandwich configuration. Faseb. J. 3, 174–177.PubMedGoogle Scholar
  19. 19.
    Guguen-Guillouzo, C., Clement, B., Baffet, G., Beaumont, C., Morel-Chany, E., Glaise, D., and Guillouzo, A. (1983) Maintenance and reversibility of active albumin secretion by adult rat hepatocytes co-cultured with another liver epithelial cell type. Exp. Cell Res. 143, 47–54.PubMedGoogle Scholar
  20. 20.
    Clement, B., Guguen-Guillouzo, C., Campion, J.P., Glaise, D., Bourel, M., and Guillouzo, A. (1984) Long-term co-cultures of adult human hepatocytes with rat liver epithelial cells: modulation of albumin secretion and accumulation of extracellular material. Hepatology 4, 373–380.PubMedGoogle Scholar
  21. 21.
    Guyomard, C., Rialland, L., Fremond, B., Chesne, C., and Guillouzo, A. (1996) Influence of alginate gel entrapment and cryopreservation on survival and xenobiotic metabolism capacity of rat hepatocytes. Toxicol. Appl. Pharmacol. 141, 349–356.PubMedGoogle Scholar
  22. 22.
    Buck, M. (2008) Direct infection and replication of naturally occurring hepatitis C virus genotypes 1, 2, 3 and 4 in normal human hepatocyte cultures. PLoS ONE 3, e2660.PubMedGoogle Scholar
  23. 23.
    Chesne, C., Guyomard, C., Fautrel, A., Poullain, M.G., Fremond, B., De Jong, H., and Guillouzo, A. (1993) Viability and function in primary culture of adult hepatocytes from various animal species and human beings after cryopreservation. Hepatology 18, 406–414.PubMedGoogle Scholar
  24. 24.
    Poullain, M.G., Fautrel, A., Guyomard, C., Chesne, C., Grislain, L., and Guillouzo, A. (1992) Viability and primary culture of rat hepatocytes after hypothermic preservation: the superiority of the Leibovitz medium over the University of Wisconsin solution for cold storage. Hepatology 15, 97–106.PubMedGoogle Scholar
  25. 25.
    Rialland, L., Guyomard, C., Scotte, M., Chesne, C., and Guillouzo, A. (2000) Viability and drug metabolism capacity of alginate-entrapped hepatocytes after cryopreservation. Cell Biol. Toxicol. 16, 105–116.PubMedGoogle Scholar
  26. 26.
    Mahler, S., Desille, M., Fremond, B., Chesne, C., Guillouzo, A., Campion, J.P., and Clement, B. (2003) Hypothermic storage and cryopreservation of hepatocytes: the protective effect of alginate gel against cell damages. Cell Transplant. 12, 579–592.PubMedGoogle Scholar
  27. 27.
    Graaf, I.A., Groothuis, G.M., and Olinga, P. (2007) Precision-cut tissue slices as a tool to predict metabolism of novel drugs. Expert Opin. Drug Metab. Toxicol. 3, 879–898.PubMedGoogle Scholar
  28. 28.
    Cascio, M., Shenkel, S., Grodzicki, R.L., Sigworth, F.J., and Fox, R.O. (2001) Functional reconstitution and characterization of recombinant human alpha 1-glycine receptors. J. Biol. Chem. 276, 20981–20988.PubMedGoogle Scholar
  29. 29.
    Mills, J.B., Rose, K.A., Sadagopan, N., Sahi, J., and de Morais, S.M. (2004) Induction of drug metabolism enzymes and MDR1 using a novel human hepatocyte cell line. J. Pharmacol. Exp. Ther. 309, 303–309.PubMedGoogle Scholar
  30. 30.
    Hariparsad, N., Carr, B.A., Evers, R., and Chu, X. (2008) Comparison of immortalized Fa2N-4 cells and human hepatocytes as in vitro models for cytochrome P450 induction. Drug Metab. Dispos. 36, 1046–1055.PubMedGoogle Scholar
  31. 31.
    Knowles, B.B., Howe, C.C., and Aden, D.P. (1980) Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science 209, 497–499.PubMedGoogle Scholar
  32. 32.
    Hewitt, N.J. and Hewitt, P. (2004) Phase I and II enzyme characterization of two sources of HepG2 cell lines. Xenobiotica 34, 243–256.PubMedGoogle Scholar
  33. 33.
    Kelly, J.H. and Sussman, N.L. (2000) A fluorescent cell-based assay for cytochrome P-450 isozyme 1A2 induction and inhibition. J. Biomol. Screen 5, 249–254.PubMedGoogle Scholar
  34. 34.
    Glaise, D., Ilyin, G.P., Loyer, P., Cariou, S., Bilodeau, M., Lucas, J., Puisieux, A., Ozturk, M., and Guguen-Guillouzo, C. (1998) Cell cycle gene regulation in reversibly differentiated new human hepatoma cell lines. Cell Growth Differ. 9, 165–176.PubMedGoogle Scholar
  35. 35.
    Gripon, P., Rumin, S., Urban, S., Le Seyec, J., Glaise, D., Cannie, I., Guyomard, C., Lucas, J., Trepo, C., and Guguen-Guillouzo, C. (2002) Infection of a human hepatoma cell line by hepatitis B virus. Proc. Natl. Acad. Sci. USA 99, 15655–15660.PubMedGoogle Scholar
  36. 36.
    Cerec, V., Glaise, D., Garnier, D., Morosan, S., Turlin, B., Drenou, B., Gripon, P., Kremsdorf, D., Guguen-Guillouzo, C., and Corlu, A. (2007) Transdifferentiation of hepatocyte-like cells from the human hepatoma HepaRG cell line through bipotent progenitor. Hepatology 45, 957–967.PubMedGoogle Scholar
  37. 37.
    Aninat, C., Piton, A., Glaise, D., Le Charpentier, T., Langouet, S., Morel, F., Guguen-Guillouzo, C., and Guillouzo, A. (2006) Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells. Drug Metab. Dispos. 34, 75–83.PubMedGoogle Scholar
  38. 38.
    Le Vee, M., Jigorel, E., Glaise, D., Gripon, P., Guguen-Guillouzo, C., and Fardel, O. (2006) Functional expression of sinusoidal and canalicular hepatic drug transporters in the differentiated human hepatoma HepaRG cell line. Eur. J. Pharm. Sci. 28, 109–117.PubMedGoogle Scholar
  39. 39.
    Antoun, J., Amet, Y., Simon, B., Dreano, Y., Corlu, A., Corcos, L., Salaun, J.P., and Plee-Gautier, E. (2006) CYP4A11 is repressed by retinoic acid in human liver cells. FEBS Lett. 580, 3361–3367.PubMedGoogle Scholar
  40. 40.
    Gilot, D., Loyer, P., Corlu, A., Glaise, D., Lagadic-Gossmann, D., Atfi, A., Morel, F., Ichijo, H., and Guguen-Guillouzo, C. (2002) Liver protection from apoptosis requires both blockage of initiator caspase activities and inhibition of ASK1/JNK pathway via glutathione S-transferase regulation. J. Biol. Chem. 277, 49220–49229.PubMedGoogle Scholar
  41. 41.
    Duret, C., Gerbal-Chaloin, S., Ramos, J., Fabre, J.M., Jacquet, E., Navarro, F., Blanc, P., Sa-Cunha, A., Maurel, P., and Daujat-Chavanieu, M. (2007) Isolation, characterization, and differentiation to hepatocyte-like cells of nonparenchymal epithelial cells from adult human liver. Stem Cells 25, 1779–1790.PubMedGoogle Scholar
  42. 42.
    Herrera, M.B., Bruno, S., Buttiglieri, S., Tetta, C., Gatti, S., Deregibus, M.C., Bussolati, B., and Camussi, G. (2006) Isolation and characterization of a stem cell population from adult human liver. Stem Cells 24, 2840–2850.PubMedGoogle Scholar
  43. 43.
    Schmelzer, E., Zhang, L., Bruce, A., Wauthier, E., Ludlow, J., Yao, H.L., Moss, N., Melhem, A., McClelland, R., Turner, W., Kulik, M., Sherwood, S., Tallheden, T., Cheng, N., Furth, M.E., and Reid, L.M. (2007) Human hepatic stem cells from fetal and postnatal donors. J. Exp. Med. 204, 1973–1987.PubMedGoogle Scholar
  44. 44.
    Snykers, S., Vanhaecke, T., Papeleu, P., Luttun, A., Jiang, Y., Vander Heyden, Y., Verfaillie, C., and Rogiers, V. (2006) Sequential exposure to cytokines reflecting embryogenesis: the key for in vitro differentiation of adult bone marrow stem cells into functional hepatocyte-like cells. Toxicol. Sci. 94, 330–341.PubMedGoogle Scholar
  45. 45.
    Hengstler, J.G., Brulport, M., Schormann, W., Bauer, A., Hermes, M., Nussler, A.K., Fandrich, F., Ruhnke, M., Ungefroren, H., Griffin, L., Bockamp, E., Oesch, F., and von Mach, M.A. (2005) Generation of human hepatocytes by stem cell technology: definition of the hepatocyte. Expert Opin. Drug Metab. Toxicol. 1, 61–74.PubMedGoogle Scholar
  46. 46.
    Basma, H., Soto-Gutierrez, A., Yannam, G.R., Liu, L., Ito, R., Yamamoto, T., Ellis, E., Carson, S.D., Sato, S., Chen, Y., Muirhead, D., Navarro-Alvarez, N., Wong, R.J., Roy-Chowdhury, J., Platt, J.L., Mercer, D.F., Miller, J.D., Strom, S.C., Kobayashi, N., and Fox, I.J. (2009) Differentiation and Transplantation of Human Embryonic Stem Cell-Derived Hepatocytes. Gastroenterology. 136, 990–999.Google Scholar
  47. 47.
    Lefort, N., Feyeux, M., Bas, C., Feraud, O., Bennaceur-Griscelli, A., Tachdjian, G., Peschanski, M., and Perrier, A.L. (2008) Human embryonic stem cells reveal recurrent genomic instability at 20q11.21. Nat. Biotechnol. 26, 1364–1366.PubMedGoogle Scholar
  48. 48.
    Rausa, F.M., Tan, Y., and Costa, R.H. (2003) Association between hepatocyte nuclear factor 6 (HNF-6) and FoxA2 DNA binding domains stimulates FoxA2 transcriptional activity but inhibits HNF-6 DNA binding. Mol. Cell Biol. 23, 437–449.PubMedGoogle Scholar
  49. 49.
    Sakaguchi, T., Gu, X., Golden, H.M., Suh, E., Rhoads, D.B., and Reinecker, H.C. (2002) Cloning of the human claudin-2 5’-flanking region revealed a TATA-less promoter with conserved binding sites in mouse and human for caudal-related homeodomain proteins and hepatocyte nuclear factor-1alpha. J. Biol. Chem. 277, 21361–21370.PubMedGoogle Scholar
  50. 50.
    Parviz, F., Matullo, C., Garrison, W.D., Savatski, L., Adamson, J.W., Ning, G., Kaestner, K.H., Rossi, J.M., Zaret, K.S., and Duncan, S.A. (2003) Hepatocyte nuclear factor 4alpha controls the development of a hepatic epithelium and liver morphogenesis. Nat. Genet. 34, 292–296.PubMedGoogle Scholar
  51. 51.
    Battle, M.A., Konopka, G., Parviz, F., Gaggl, A.L., Yang, C., Sladek, F.M., and Duncan, S.A. (2006) Hepatocyte nuclear factor 4alpha orchestrates expression of cell adhesion proteins during the epithelial transformation of the developing liver. Proc. Natl. Acad. Sci. USA 103, 8419–8424.PubMedGoogle Scholar
  52. 52.
    Kyrmizi, I., Hatzis, P., Katrakili, N., Tronche, F., Gonzalez, F.J., and Talianidis, I. (2006) Plasticity and expanding complexity of the hepatic transcription factor network during liver development. Genes Dev. 20, 2293–2305.PubMedGoogle Scholar
  53. 53.
    Odom, D.T., Zizlsperger, N., Gordon, D.B., Bell, G.W., Rinaldi, N.J., Murray, H.L., Volkert, T.L., Schreiber, J., Rolfe, P.A., Gifford, D.K., Fraenkel, E., Bell, G.I., and Young, R.A. (2004) Control of pancreas and liver gene expression by HNF transcription factors. Science 303, 1378–1381.PubMedGoogle Scholar
  54. 54.
    Liu, J.K., DiPersio, C.M., and Zaret, K.S. (1991) Extracellular signals that regulate liver transcription factors during hepatic differentiation in vitro. Mol. Cell Biol. 11, 773–784.PubMedGoogle Scholar
  55. 55.
    Castell, J.V., Jover, R., Martinez-Jimenez, C.P., and Gomez-Lechon, M.J. (2006) Hepatocyte cell lines: their use, scope and limitations in drug metabolism studies. Expert Opin. Drug Metab. Toxicol. 2, 183–212.PubMedGoogle Scholar
  56. 56.
    Corlu, A., Kneip, B., Lhadi, C., Leray, G., Glaise, D., Baffet, G., Bourel, D., and Guguen-Guillouzo, C. (1991) A plasma membrane protein is involved in cell contact-mediated regulation of tissue-specific genes in adult hepatocytes. J. Cell Biol. 115, 505–515.PubMedGoogle Scholar
  57. 57.
    Fraslin, J.M., Kneip, B., Vaulont, S., Glaise, D., Munnich, A., and Guguen-Guillouzo, C. (1985) Dependence of hepatocyte-specific gene expression on cell-cell interactions in primary culture. EMBO J. 4, 2487–2491.PubMedGoogle Scholar
  58. 58.
    Troadec, M.B., Glaise, D., Lamirault, G., Le Cunff, M., Guerin, E., Le Meur, N., Detivaud, L., Zindy, P., Leroyer, P., Guisle, I., Duval, H., Gripon, P., Theret, N., Boudjema, K., Guguen-Guillouzo, C., Brissot, P., Leger, J.J., and Loreal, O. (2006) Hepatocyte iron loading capacity is associated with differentiation and repression of motility in the HepaRG cell line. Genomics 87, 93–103.PubMedGoogle Scholar
  59. 59.
    Carre, N., Cauzac, M., Girard, J., and Burnol, A.F. (2008) Dual effect of the adapter growth factor receptor-bound protein 14 (grb14) on insulin action in primary hepatocytes. Endocrinology 149, 3109–3117.PubMedGoogle Scholar
  60. 60.
    Dentin, R., Pegorier, J.P., Benhamed, F., Foufelle, F., Ferre, P., Fauveau, V., Magnuson, M.A., Girard, J., and Postic, C. (2004) Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression. J. Biol. Chem. 279, 20314–20326.PubMedGoogle Scholar
  61. 61.
    Decaux, J.F., Antoine, B., and Kahn, A. (1989) Regulation of the expression of the L-type pyruvate kinase gene in adult rat hepatocytes in primary culture. J. Biol. Chem. 264, 11584–11590.PubMedGoogle Scholar
  62. 62.
    Forte, T.M. (1984) Primary hepatocytes in monolayer culture: a model for studies on lipoprotein metabolism. Annu. Rev. Physiol. 46, 403–415.PubMedGoogle Scholar
  63. 63.
    Bell-Quint, J., Forte, T., and Graham, P. (1981) Glycosylation of apolipoproteins by cultured rat hepatocytes. Effect of tunicamycin on lipoprotein secretion. Biochem. J. 200, 409–414.PubMedGoogle Scholar
  64. 64.
    Berthou, L., Duverger, N., Emmanuel, F., Langouet, S., Auwerx, J., Guillouzo, A., Fruchart, J.C., Rubin, E., Denefle, P., Staels, B., and Branellec, D. (1996) Opposite regulation of human versus mouse apolipoprotein A-I by fibrates in human apolipoprotein A-I transgenic mice. J. Clin. Invest. 97, 2408–2416.PubMedGoogle Scholar
  65. 65.
    Pascussi, J.M., Gerbal-Chaloin, S., Duret, C., Daujat-Chavanieu, M., Vilarem, M.J., and Maurel, P. (2008) The tangle of nuclear receptors that controls xenobiotic metabolism and transport: crosstalk and consequences. Annu. Rev. Pharmacol. Toxicol. 48, 1–32.PubMedGoogle Scholar
  66. 66.
    Lambert, C.B., Spire, C., Claude, N., and Guillouzo, A. (2009) Dose- and time-dependent effects of phenobarbital on gene expression profiling in human hepatoma HepaRG cells. Toxicol. Appl. Pharmacol. 234, 345–360.PubMedGoogle Scholar
  67. 67.
    Wallington, J., Ning, J., and Titheradge, M.A. (2008) The control of hepatic glycogen metabolism in an in vitro model of sepsis. Mol. Cell Biochem. 308, 183–192.PubMedGoogle Scholar
  68. 68.
    Aninat, C., Seguin, P., Descheemaeker, P.N., Morel, F., Malledant, Y., and Guillouzo, A. (2008) Catecholamines induce an inflammatory response in human hepatocytes. Crit. Care Med. 36, 848–854.PubMedGoogle Scholar
  69. 69.
    Lesnikov, V.A., Abbasi, N., Lesnikova, M.P., Lazaro, C.A., Campbell, J.S., Fausto, N., and Deeg, H.J. (2006) Protection of human and murine hepatocytes against Fas-induced death by transferrin and iron. Apoptosis 11, 79–87.PubMedGoogle Scholar
  70. 70.
    Lin, L., Valore, E.V., Nemeth, E., Goodnough, J.B., Gabayan, V., and Ganz, T. (2007) Iron transferrin regulates hepcidin synthesis in primary hepatocyte culture through hemojuvelin and BMP2/4. Blood 110, 2182–2189.PubMedGoogle Scholar
  71. 71.
    Mitaka, T., Sattler, C.A., Sattler, G.L., Sargent, L.M., and Pitot, H.C. (1991) Multiple cell cycles occur in rat hepatocytes cultured in the presence of nicotinamide and epidermal growth factor. Hepatology 13, 21–30.PubMedGoogle Scholar
  72. 72.
    Blanc, P., Etienne, H., Daujat, M., Fabre, I., Zindy, F., Domergue, J., Astre, C., Saint Aubert, B., Michel, H., and Maurel, P. (1992) Mitotic responsiveness of cultured adult human hepatocytes to epidermal growth factor, transforming growth factor alpha, and human serum. Gastroenterology 102, 1340–1350.PubMedGoogle Scholar
  73. 73.
    Eckl, P.M., Whitcomb, W.R., Michalopoulos, G., and Jirtle, R.L. (1987) Effects of EGF and calcium on adult parenchymal hepatocyte proliferation. J. Cell Physiol. 132, 363–366.PubMedGoogle Scholar
  74. 74.
    Ismail, T., Howl, J., Wheatley, M., McMaster, P., Neuberger, J.M., and Strain, A.J. (1991) Growth of normal human hepatocytes in primary culture: effect of hormones and growth factors on DNA synthesis. Hepatology 14, 1076–1082.PubMedGoogle Scholar
  75. 75.
    Loyer, P., Cariou, S., Glaise, D., Bilodeau, M., Baffet, G., and Guguen-Guillouzo, C. (1996) Growth factor dependence of progression through G1 and S phases of adult rat hepatocytes in vitro. Evidence of a mitogen restriction point in mid-late G1. J. Biol. Chem. 271, 11484–11492.PubMedGoogle Scholar
  76. 76.
    Rescan, C., Coutant, A., Talarmin, H., Theret, N., Glaise, D., Guguen-Guillouzo, C., and Baffet, G. (2001) Mechanism in the sequential control of cell morphology and S phase entry by epidermal growth factor involves distinct MEK/ERK activations. Mol. Biol. Cell 12, 725–738.PubMedGoogle Scholar
  77. 77.
    Fremin, C., Ezan, F., Boisselier, P., Bessard, A., Pages, G., Pouyssegur, J., and Baffet, G. (2007) ERK2 but not ERK1 plays a key role in hepatocyte replication: an RNAi-mediated ERK2 knockdown approach in wild-type and ERK1 null hepatocytes. Hepatology 45, 1035–1045.PubMedGoogle Scholar
  78. 78.
    Coutant, A., Rescan, C., Gilot, D., Loyer, P., Guguen-Guillouzo, C., and Baffet, G. (2002) PI3K-FRAP/mTOR pathway is critical for hepatocyte proliferation whereas MEK/ERK supports both proliferation and survival. Hepatology 36, 1079–1088.PubMedGoogle Scholar
  79. 79.
    Gilot, D., Serandour, A.L., Ilyin, G.P., Lagadic-Gossmann, D., Loyer, P., Corlu, A., Coutant, A., Baffet, G., Peter, M.E., Fardel, O., and Guguen-Guillouzo, C. (2005) A role for caspase-8 and c-FLIPL in proliferation and cell-cycle progression of primary hepatocytes. Carcinogenesis 26, 2086–2094.PubMedGoogle Scholar
  80. 80.
    Ilyin, G.P., Glaise, D., Gilot, D., Baffet, G., and Guguen-Guillouzo, C. (2003) Regulation and role of p21 and p27 cyclin-dependent kinase inhibitors during hepatocyte differentiation and growth. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G115–G127.PubMedGoogle Scholar
  81. 81.
    Serandour, A.L., Loyer, P., Garnier, D., Courselaud, B., Theret, N., Glaise, D., Guguen-Guillouzo, C., and Corlu, A. (2005) TNFalpha-mediated extracellular matrix remodeling is required for multiple division cycles in rat hepatocytes. Hepatology 41, 478–486.PubMedGoogle Scholar
  82. 82.
    Jigorel, E., Le Vee, M., Boursier-Neyret, C., Bertrand, M., and Fardel, O. (2005) Functional expression of sinusoidal drug transporters in primary human and rat hepatocytes. Drug Metab. Dispos. 33, 1418–1422.PubMedGoogle Scholar
  83. 83.
    Graf, J., Gautam, A., and Boyer, J.L. (1984) Isolated rat hepatocyte couplets: a primary secretory unit for electrophysiologic studies of bile secretory function. Proc. Natl. Acad. Sci. USA 81, 6516–6520.PubMedGoogle Scholar
  84. 84.
    Boyer, J.L. (2008) Bile canalicular secretion – tales from Vienna and Yale. Wien. Med. Wochenschr. 158, 534–538.PubMedGoogle Scholar
  85. 85.
    Govindarajan, R., Endres, C.J., Whittington, D., LeCluyse, E., Pastor-Anglada, M., Tse, C.M., and Unadkat, J.D. (2008) Expression and hepatobiliary transport characteristics of the concentrative and equilibrative nucleoside transporters in sandwich-cultured human hepatocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G570–G580.PubMedGoogle Scholar
  86. 86.
    Marion, T.L., Leslie, E.M., and Brouwer, K.L. (2007) Use of sandwich-cultured hepatocytes to evaluate impaired bile acid transport as a mechanism of drug-induced hepatotoxicity. Mol. Pharm. 4, 911–918.PubMedGoogle Scholar
  87. 87.
    McRae, M.P., Lowe, C.M., Tian, X., Bourdet, D.L., Ho, R.H., Leake, B.F., Kim, R.B., Brouwer, K.L., and Kashuba, A.D. (2006) Ritonavir, saquinavir, and efavirenz, but not nevirapine, inhibit bile acid transport in human and rat hepatocytes. J. Pharmacol. Exp. Ther. 318, 1068–1075.PubMedGoogle Scholar
  88. 88.
    Jigorel, E., Le Vee, M., Boursier-Neyret, C., Parmentier, Y., and Fardel, O. (2006) Differential regulation of sinusoidal and canalicular hepatic drug transporter expression by xenobiotics activating drug-sensing receptors in primary human hepatocytes. Drug Metab. Dispos. 34, 1756–1763.PubMedGoogle Scholar
  89. 89.
    Josse, R., Aninat, C., Glaise, D., Dumont, J., Fessard, V., Morel, F., Poul, J.M., Guguen-Guillouzo, C., and Guillouzo, A. (2008) Long-term functional stability of human HepaRG hepatocytes and use for chronic toxicity and genotoxicity studies. Drug Metab. Dispos. 36, 1111–1118.PubMedGoogle Scholar
  90. 90.
    Madan, A., Graham, R.A., Carroll, K.M., Mudra, D.R., Burton, L.A., Krueger, L.A., Downey, A.D., Czerwinski, M., Forster, J., Ribadeneira, M.D., Gan, L.S., LeCluyse, E.L., Zech, K., Robertson, P., Jr., Koch, P., Antonian, L., Wagner, G., Yu, L., and Parkinson, A. (2003) Effects of prototypical microsomal enzyme inducers on cytochrome P450 expression in cultured human hepatocytes. Drug Metab. Dispos. 31, 421–431.PubMedGoogle Scholar
  91. 91.
    Morel, F., Beaune, P.H., Ratanasavanh, D., Flinois, J.P., Yang, C.S., Guengerich, F.P., and Guillouzo, A. (1990) Expression of cytochrome P-450 enzymes in cultured human hepatocytes. Eur. J. Biochem. 191, 437–444.PubMedGoogle Scholar
  92. 92.
    Gomez-Lechon, M.J., Castell, J.V., and Donato, M.T. (2007) Hepatocytes – the choice to investigate drug metabolism and toxicity in man: in vitro variability as a reflection of in vivo. Chem. Biol. Interact. 168, 30–50.PubMedGoogle Scholar
  93. 93.
    Diaz, D., Fabre, I., Daujat, M., Saint Aubert, B., Bories, P., Michel, H., and Maurel, P. (1990) Omeprazole is an aryl hydrocarbon-like inducer of human hepatic cytochrome P450. Gastroenterology 99, 737–747.PubMedGoogle Scholar
  94. 94.
    Kanebratt, K.P. and Andersson, T.B. (2008) HepaRG cells as an in vitro model for evaluation of cytochrome P450 induction in humans. Drug Metab. Dispos. 36, 137–145.PubMedGoogle Scholar
  95. 95.
    Brown, H.S., Chadwick, A., and Houston, J.B. (2007) Use of isolated hepatocyte preparations for cytochrome P450 inhibition studies: comparison with microsomes for Ki determination. Drug Metab. Dispos. 35, 2119–2126.PubMedGoogle Scholar
  96. 96.
    McGinnity, D.F., Soars, M.G., Urbanowicz, R.A., and Riley, R.J. (2004) Evaluation of fresh and cryopreserved hepatocytes as in vitro drug metabolism tools for the prediction of metabolic clearance. Drug Metab. Dispos. 32, 1247–1253.PubMedGoogle Scholar
  97. 97.
    Castell, J.V., Gomez-Lechon, M.J., Ponsoda, X., and Bort, R. (1997) The use of cultured hepatocytes to investigate the mechanisms of drug hepatotoxicity. Cell Biol. Toxicol. 13, 331–338.PubMedGoogle Scholar
  98. 98.
    Xu, J.J., Diaz, D., and O’Brien, P.J. (2004) Applications of cytotoxicity assays and pre-lethal mechanistic assays for assessment of human hepatotoxicity potential. Chem. Biol. Interact. 150, 115–128.PubMedGoogle Scholar
  99. 99.
    De Gottardi, A., Vinciguerra, M., Sgroi, A., Moukil, M., Ravier-Dall’Antonia, F., Pazienza, V., Pugnale, P., Foti, M., and Hadengue, A. (2007) Microarray analyses and molecular profiling of steatosis induction in immortalized human hepatocytes. Lab. Invest. 87, 792–806.PubMedGoogle Scholar
  100. 100.
    Gomez-Lechon, M.J., Donato, M.T., Martinez-Romero, A., Jimenez, N., Castell, J.V., and O’Connor, J.E. (2007) A human hepatocellular in vitro model to investigate steatosis. Chem. Biol. Interact. 165, 106–116.PubMedGoogle Scholar
  101. 101.
    Michalopoulos, G.K., Bowen, W.C., Mule, K., and Stolz, D.B. (2001) Histological organization in hepatocyte organoid cultures. Am. J. Pathol. 159, 1877–1887.PubMedGoogle Scholar
  102. 102.
    Flynn, T.J. and Ferguson, M.S. (2008) Multiendpoint mechanistic profiling of hepatotoxicants in HepG2/C3A human hepatoma cells and novel statistical approaches for development of a prediction model for acute hepatotoxicity. Toxicol. In Vitro 22, 1618–1631.PubMedGoogle Scholar
  103. 103.
    Marroquin, L.D., Hynes, J., Dykens, J.A., Jamieson, J.D., and Will, Y. (2007) Circumventing the Crabtree effect: replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants. Toxicol. Sci. 97, 539–547.PubMedGoogle Scholar
  104. 104.
    Kenne, K., Skanberg, I., Glinghammar, B., Berson, A., Pessayre, D., Flinois, J.P., Beaune, P., Edebert, I., Pohl, C.D., Carlsson, S., and Andersson, T.B. (2008) Prediction of drug-induced liver injury in humans by using in vitro methods: the case of ximelagatran. Toxicol. In Vitro 22, 730–746.PubMedGoogle Scholar
  105. 105.
    Ratanasavanh, D., Baffet, G., Latinier, M.F., Rissel, M., and Guillouzo, A. (1988) Use of hepatocyte co-cultures in the assessment of drug toxicity from chronic exposure. Xenobiotica 18, 765–771.PubMedGoogle Scholar
  106. 106.
    Kirkland, D.J., Hayashi, M., Jacobson-Kram, D., Kasper, P., MacGregor, J.T., Muller, L., and Uno, Y. (2007) The International Workshops on Genotoxicity Testing (IWGT): history and achievements. Mutat. Res. 627, 1–4.PubMedGoogle Scholar
  107. 107.
    Suter, W. (2006) Predictive value of in vitro safety studies. Curr. Opin. Chem. Biol. 10, 362–366.PubMedGoogle Scholar
  108. 108.
    Williams, G.M. (1977) Detection of chemical carcinogens by unscheduled DNA synthesis in rat liver primary cell cultures. Cancer Res. 37, 1845–1851.PubMedGoogle Scholar
  109. 109.
    Madle, S., Dean, S.W., Andrae, U., Brambilla, G., Burlinson, B., Doolittle, D.J., Furihata, C., Hertner, T., McQueen, C.A., and Mori, H. (1994) Recommendations for the performance of UDS tests in vitro and in vivo. Mutat. Res. 312, 263–285.PubMedGoogle Scholar
  110. 110.
    Muller, L., Kasper, P., Muller-Tegethoff, K., and Petr, T. (1994) The genotoxic potential in vitro and in vivo of the allyl benzene etheric oils estragole, basil oil and trans-anethole. Mutat. Res. 325, 129–136.PubMedGoogle Scholar
  111. 111.
    Majer, B.J., Mersch-Sundermann, V., Darroudi, F., Laky, B., de Wit, K., and Knasmuller, S. (2004) Genotoxic effects of dietary and lifestyle related carcinogens in human derived hepatoma (HepG2, Hep3B) cells. Mutat. Res. 551, 153–166.PubMedGoogle Scholar
  112. 112.
    Knasmuller, S., Mersch-Sundermann, V., Kevekordes, S., Darroudi, F., Huber, W.W., Hoelzl, C., Bichler, J., and Majer, B.J. (2004) Use of human-derived liver cell lines for the detection of environmental and dietary genotoxicants; current state of knowledge. Toxicology 198, 315–328.PubMedGoogle Scholar
  113. 113.
    Martelli, A., Robbiano, L., Gazzaniga, G.M., and Brambilla, G. (1988) Comparative study of DNA damage and repair induced by ten N-nitroso compounds in primary cultures of human and rat hepatocytes. Cancer Res. 48, 4144–4152.PubMedGoogle Scholar
  114. 114.
    O’Brien, P.J., Irwin, W., Diaz, D., Howard-Cofield, E., Krejsa, C.M., Slaughter, M.R., Gao, B., Kaludercic, N., Angeline, A., Bernardi, P., Brain, P., and Hougham, C. (2006) High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening. Arch. Toxicol. 80, 580–604.PubMedGoogle Scholar
  115. 115.
    Lemaire, F., Mandon, C.A., Reboud, J., Papine, A., Angulo, J., Pointu, H., Diaz-Latoud, C., Lajaunie, C., Chatelain, F., Arrigo, A.P., and Schaack, B. (2007) Toxicity assays in nanodrops combining bioassay and morphometric endpoints. PLoS ONE 2, e163.PubMedGoogle Scholar
  116. 116.
    Baudoin, R., Corlu, A., Griscom, L., Legallais, C., and Leclerc, E. (2007) Trends in the development of microfluidic cell biochips for in vitro hepatotoxicity. Toxicol. In Vitro 21, 535–544.PubMedGoogle Scholar
  117. 117.
    Beekman, J.M., Boess, F., Hildebrand, H., Kalkuhl, A., and Suter, L. (2006) Gene expression analysis of the hepatotoxicant methapyrilene in primary rat hepatocytes: an interlaboratory study. Environ. Health Perspect. 114, 92–99.PubMedGoogle Scholar
  118. 118.
    Liguori, M.J., Anderson, M.G., Bukofzer, S., McKim, J., Pregenzer, J.F., Retief, J., Spear, B.B., and Waring, J.F. (2005) Microarray analysis in human hepatocytes suggests a mechanism for hepatotoxicity induced by trovafloxacin. Hepatology 41, 177–186.PubMedGoogle Scholar
  119. 119.
    Olsavsky, K.M., Page, J.L., Johnson, M.C., Zarbl, H., Strom, S.C., and Omiecinski, C.J. (2007) Gene expression profiling and differentiation assessment in primary human hepatocyte cultures, established hepatoma cell lines, and human liver tissues. Toxicol. Appl. Pharmacol. 222, 42–56.PubMedGoogle Scholar
  120. 120.
    Boess, F., Kamber, M., Romer, S., Gasser, R., Muller, D., Albertini, S., and Suter, L. (2003) Gene expression in two hepatic cell lines, cultured primary hepatocytes, and liver slices compared to the in vivo liver gene expression in rats: possible implications for toxicogenomics use of in vitro systems. Toxicol. Sci. 73, 386–402.PubMedGoogle Scholar
  121. 121.
    Goyak, K.M., Johnson, M.C., Strom, S.C., and Omiecinski, C.J. (2008) Expression profiling of interindividual variability following xenobiotic exposures in primary human hepatocyte cultures. Toxicol. Appl. Pharmacol. 231, 216–224.PubMedGoogle Scholar
  122. 122.
    Lambert, C.B., Spire, C., Renaud, M.P., Claude, N., and Guillouzo, A. (2009) Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol. In Vitro 23, 466–475.PubMedGoogle Scholar
  123. 123.
    McMillian, M., Nie, A.Y., Parker, J.B., Leone, A., Bryant, S., Kemmerer, M., Herlich, J., Liu, Y., Yieh, L., Bittner, A., Liu, X., Wan, J., and Johnson, M.D. (2004) A gene expression signature for oxidant stress/reactive metabolites in rat liver. Biochem. Pharmacol. 68, 2249–2261.PubMedGoogle Scholar
  124. 124.
    van Delft, J.H., van Agen, E., van Breda, S.G., Herwijnen, M.H., Staal, Y.C., and Kleinjans, J.C. (2005) Comparison of supervised clustering methods to discriminate genotoxic from non-genotoxic carcinogens by gene expression profiling. Mutat. Res. 575, 17–33.PubMedGoogle Scholar
  125. 125.
    Waring, J.F., Ciurlionis, R., Jolly, R.A., Heindel, M., and Ulrich, R.G. (2001) Microarray analysis of hepatotoxins in vitro reveals a correlation between gene expression profiles and mechanisms of toxicity. Toxicol. Lett. 120, 359–368.PubMedGoogle Scholar
  126. 126.
    Ellinger-Ziegelbauer, H., Gmuender, H., Bandenburg, A., and Ahr, H.J. (2008) Prediction of a carcinogenic potential of rat hepatocarcinogens using toxicogenomics analysis of short-term in vivo studies. Mutat. Res. 637, 23–39.PubMedGoogle Scholar
  127. 127.
    Morel, F., Langouet, S., Maheo, K., and Guillouzo, A. (1997) The use of primary hepatocyte cultures for the evaluation of chemoprotective agents. Cell Biol. Toxicol. 13, 323–329.PubMedGoogle Scholar
  128. 128.
    Piton, A., Le Ferrec, E., Langouet, S., Rauch, C., Petit, E., Le Goff, F., Guillouzo, A., and Morel, F. (2005) Oltipraz regulates different categories of genes relevant to chemoprevention in human hepatocytes. Carcinogenesis 26, 343–351.PubMedGoogle Scholar
  129. 129.
    Abdel-Razzak, Z., Loyer, P., Fautrel, A., Gautier, J.C., Corcos, L., Turlin, B., Beaune, P., and Guillouzo, A. (1993) Cytokines down-regulate expression of major cytochrome P-450 enzymes in adult human hepatocytes in primary culture. Mol. Pharmacol. 44, 707–715.PubMedGoogle Scholar
  130. 130.
    Moreau, A., Vilarem, M.J., Maurel, P., and Pascussi, J.M. (2008) Xenoreceptors CAR and PXR activation and consequences on lipid metabolism, glucose homeostasis, and inflammatory response. Mol. Pharm. 5, 35–41.PubMedGoogle Scholar
  131. 131.
    Allen, J.W., Hassanein, T., and Bhatia, S.N. (2001) Advances in bioartificial liver devices. Hepatology 34, 447–455.PubMedGoogle Scholar
  132. 132.
    Gerlach, J.C., Zeilinger, K., and Patzer Ii, J.F. (2008) Bioartificial liver systems: why, what, whither? Regen. Med. 3, 575–595.PubMedGoogle Scholar
  133. 133.
    Demetriou, A.A., Brown, R.S., Jr., Busuttil, R.W., Fair, J., McGuire, B.M., Rosenthal, P., Am Esch, J.S., 2nd, Lerut, J., Nyberg, S.L., Salizzoni, M., Fagan, E.A., de Hemptinne, B., Broelsch, C.E., Muraca, M., Salmeron, J.M., Rabkin, J.M., Metselaar, H.J., Pratt, D., De La Mata, M., McChesney, L.P., Everson, G.T., Lavin, P.T., Stevens, A.C., Pitkin, Z., and Solomon, B.A. (2004) Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure. Ann. Surg. 239, 660–667.PubMedGoogle Scholar
  134. 134.
    Fisher, R.A. and Strom, S.C. (2006) Human hepatocyte transplantation: worldwide results. Transplantation 82, 441–449.PubMedGoogle Scholar
  135. 135.
    Baumgartner, D., LaPlante-O’Neill, P.M., Sutherland, D.E., and Najarian, J.S. (1983) Effects of intrasplenic injection of hepatocytes, hepatocyte fragments and hepatocyte culture supernatants on D-galactosamine-induced liver failure in rats. Eur. Surg. Res. 15, 129–135.PubMedGoogle Scholar
  136. 136.
    Demetriou, A.A., Reisner, A., Sanchez, J., Levenson, S.M., Moscioni, A.D., and Chowdhury, J.R. (1988) Transplantation of microcarrier-attached hepatocytes into 90% partially hepatectomized rats. Hepatology 8, 1006–1009.PubMedGoogle Scholar
  137. 137.
    Nussler, A., Konig, S., Ott, M., Sokal, E., Christ, B., Thasler, W., Brulport, M., Gabelein, G., Schormann, W., Schulze, M., Ellis, E., Kraemer, M., Nocken, F., Fleig, W., Manns, M., Strom, S.C., and Hengstler, J.G. (2006) Present status and perspectives of cell-based therapies for liver diseases. J. Hepatol. 45, 144–159.PubMedGoogle Scholar
  138. 138.
    Mito, M., Kusano, M., and Kawaura, Y. (1992) Hepatocyte transplantation in man. Transplant. Proc. 24, 3052–3053.PubMedGoogle Scholar
  139. 139.
    Grossman, M., Rader, D.J., Muller, D.W., Kolansky, D.M., Kozarsky, K., Clark, B.J., 3rd, Stein, E.A., Lupien, P.J., Brewer, H.B., Jr., Raper, S.E. et al. (1995) A pilot study of ex vivo gene therapy for homozygous familial hypercholesterolaemia. Nat. Med. 1, 1148–1154.PubMedGoogle Scholar
  140. 140.
    Fox, I.J., Chowdhury, J.R., Kaufman, S.S., Goertzen, T.C., Chowdhury, N.R., Warkentin, P.I., Dorko, K., Sauter, B.V., and Strom, S.C. (1998) Treatment of the Crigler-Najjar syndrome type I with hepatocyte transplantation. N. Engl. J. Med. 338, 1422–1426.PubMedGoogle Scholar
  141. 141.
    Dhawan, A., Mitry, R.R., and Hughes, R.D. (2006) Hepatocyte transplantation for liver-based metabolic disorders. J. Inherit. Metab. Dis. 29, 431–435.PubMedGoogle Scholar
  142. 142.
    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872.PubMedGoogle Scholar
  143. 143.
    Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin, I.I., and Thomson, J.A. (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920.PubMedGoogle Scholar
  144. 144.
    Oertel, M., Menthena, A., Chen, Y.Q., Teisner, B., Jensen, C.H., and Shafritz, D.A. (2008) Purification of fetal liver stem/progenitor cells containing all the repopulation potential for normal adult rat liver. Gastroenterology 134, 823–832.PubMedGoogle Scholar
  145. 145.
    Gripon, P., Diot, C., Theze, N., Fourel, I., Loreal, O., Brechot, C., and Guguen-Guillouzo, C. (1988) Hepatitis B virus infection of adult human hepatocytes cultured in the presence of dimethyl sulfoxide. J. Virol. 62, 4136–4143.PubMedGoogle Scholar
  146. 146.
    Sureau, C., Romet-Lemonne, J.L., Mullins, J.I., and Essex, M. (1986) Production of hepatitis B virus by a differentiated human hepatoma cell line after transfection with cloned circular HBV DNA. Cell 47, 37–47.PubMedGoogle Scholar
  147. 147.
    Tsurimoto, T., Fujiyama, A., and Matsubara, K. (1987) Stable expression and replication of hepatitis B virus genome in an integrated state in a human hepatoma cell line transfected with the cloned viral DNA. Proc. Natl. Acad. Sci. USA 84, 444–448.PubMedGoogle Scholar
  148. 148.
    Tuttleman, J.S., Pugh, J.C., and Summers, J.W. (1986) In vitro experimental infection of primary duck hepatocyte cultures with duck hepatitis B virus. J. Virol. 58, 17–25.PubMedGoogle Scholar
  149. 149.
    Kock, J., Nassal, M., MacNelly, S., Baumert, T.F., Blum, H.E., and von Weizsacker, F. (2001) Efficient infection of primary tupaia hepatocytes with purified human and woolly monkey hepatitis B virus. J. Virol. 75, 5084–5089.PubMedGoogle Scholar
  150. 150.
    Quasdorff, M., Hosel, M., Odenthal, M., Zedler, U., Bohne, F., Gripon, P., Dienes, H.P., Drebber, U., Stippel, D., Goeser, T., and Protzer, U. (2008) A concerted action of HNF4alpha and HNF1alpha links hepatitis B virus replication to hepatocyte differentiation. Cell Microbiol. 10, 1478–1490.PubMedGoogle Scholar
  151. 151.
    Hantz, O., Parent, R., Durantel, D., Gripon, P., Guguen-Guillouzo, C., and Zoulim, F. (2009) Persistence of the hepatitis B virus covalently closed circular DNA in HepaRG human hepatocyte-like cells. J. Gen. Virol. 90, 127–135.PubMedGoogle Scholar
  152. 152.
    Rabe, B., Glebe, D., and Kann, M. (2006) Lipid-mediated introduction of hepatitis B virus capsids into nonsusceptible cells allows highly efficient replication and facilitates the study of early infection events. J. Virol. 80, 5465–5473.PubMedGoogle Scholar
  153. 153.
    Glebe, D. (2007) Recent advances in hepatitis B virus research: a German point of view. World J. Gastroenterol. 13, 8–13.PubMedGoogle Scholar
  154. 154.
    Petersen, J., Dandri, M., Mier, W., Lutgehetmann, M., Volz, T., von Weizsacker, F., Haberkorn, U., Fischer, L., Pollok, J.M., Erbes, B., Seitz, S., and Urban, S. (2008) Prevention of hepatitis B virus infection in vivo by entry inhibitors derived from the large envelope protein. Nat. Biotechnol. 26, 335–341.PubMedGoogle Scholar
  155. 155.
    Pasquetto, V., Wieland, S.F., Uprichard, S.L., Tripodi, M., and Chisari, F.V. (2002) Cytokine-sensitive replication of hepatitis B virus in immortalized mouse hepatocyte cultures. J. Virol. 76, 5646–5653.PubMedGoogle Scholar
  156. 156.
    Fournier, C., Sureau, C., Coste, J., Ducos, J., Pageaux, G., Larrey, D., Domergue, J., and Maurel, P. (1998) In vitro infection of adult normal human hepatocytes in primary culture by hepatitis C virus. J. Gen. Virol. 79 (Pt 10), 2367–2374.PubMedGoogle Scholar
  157. 157.
    Rumin, S., Berthillon, P., Tanaka, E., Kiyosawa, K., Trabaud, M.A., Bizollon, T., Gouillat, C., Gripon, P., Guguen-Guillouzo, C., Inchauspe, G., and Trepo, C. (1999) Dynamic analysis of hepatitis C virus replication and quasispecies selection in long-term cultures of adult human hepatocytes infected in vitro. J. Gen. Virol. 80 (Pt 11), 3007–3018.PubMedGoogle Scholar
  158. 158.
    Lohmann, V., Korner, F., Koch, J., Herian, U., Theilmann, L., and Bartenschlager, R. (1999) Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110–113.PubMedGoogle Scholar
  159. 159.
    Blight, K.J., McKeating, J.A., and Rice, C.M. (2002) Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J. Virol. 76, 13001–13014.PubMedGoogle Scholar
  160. 160.
    Lindenbach, B.D., Evans, M.J., Syder, A.J., Wolk, B., Tellinghuisen, T.L., Liu, C.C., Maruyama, T., Hynes, R.O., Burton, D.R., McKeating, J.A., and Rice, C.M. (2005) Complete replication of hepatitis C virus in cell culture. Science 309, 623–626.PubMedGoogle Scholar
  161. 161.
    Zhong, J., Gastaminza, P., Cheng, G., Kapadia, S., Kato, T., Burton, D.R., Wieland, S.F., Uprichard, S.L., Wakita, T., and Chisari, F.V. (2005) Robust hepatitis C virus infection in vitro. Proc. Natl. Acad. Sci. USA 102, 9294–9299.PubMedGoogle Scholar
  162. 162.
    Fukutomi, T., Zhou, Y., Kawai, S., Eguchi, H., Wands, J.R., and Li, J. (2005) Hepatitis C virus core protein stimulates hepatocyte growth: correlation with upregulation of wnt-1 expression. Hepatology 41, 1096–1105.PubMedGoogle Scholar
  163. 163.
    Macdonald, A., Chan, J.K., and Harris, M. (2005) Perturbation of epidermal growth factor receptor complex formation and Ras signalling in cells harbouring the hepatitis C virus subgenomic replicon. J. Gen. Virol. 86, 1027–1033.PubMedGoogle Scholar
  164. 164.
    Hsu, M., Zhang, J., Flint, M., Logvinoff, C., Cheng-Mayer, C., Rice, C.M., and McKeating, J.A. (2003) Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc. Natl. Acad. Sci. USA 100, 7271–7276.PubMedGoogle Scholar
  165. 165.
    Mateu, G., Donis, R.O., Wakita, T., Bukh, J., and Grakoui, A. (2008) Intragenotypic JFH1 based recombinant hepatitis C virus produces high levels of infectious particles but causes increased cell death. Virology 376, 397–407.PubMedGoogle Scholar
  166. 166.
    Regeard, M., Trotard, M., Lepere, C., Gripon, P., and Le Seyec, J. (2008) Entry of pseudotyped hepatitis C virus into primary human hepatocytes depends on the scavenger class B type I receptor. J. Viral Hepat. 15, 865–870.PubMedGoogle Scholar
  167. 167.
    Cocquerel, L., Voisset, C., and Dubuisson, J. (2006) Hepatitis C virus entry: potential receptors and their biological functions. J. Gen. Virol. 87, 1075–1084.PubMedGoogle Scholar
  168. 168.
    Harris, H.J., Farquhar, M.J., Mee, C.J., Davis, C., Reynolds, G.M., Jennings, A., Hu, K., Yuan, F., Deng, H., Hubscher, S.G., Han, J.H., Balfe, P., and McKeating, J.A. (2008) CD81 and claudin 1 coreceptor association: role in hepatitis C virus entry. J. Virol. 82, 5007–5020.PubMedGoogle Scholar
  169. 169.
    Liu, S., Yang, W., Shen, L., Turner, J.R., Coyne, C.B., and Wang, T. (2009) Tight junction proteins claudin-1 and occludin control hepatitis C virus entry and are downregulated during infection to prevent superinfection. J. Virol. 83, 2011–2014.PubMedGoogle Scholar
  170. 170.
    Ploss, A., Evans, M.J., Gaysinskaya, V.A., Panis, M., You, H., de Jong, Y.P., and Rice, C.M. (2009) Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457, 882–886.PubMedGoogle Scholar
  171. 171.
    Molina, S., Castet, V., Pichard-Garcia, L., Wychowski, C., Meurs, E., Pascussi, J.M., Sureau, C., Fabre, J.M., Sacunha, A., Larrey, D., Dubuisson, J., Coste, J., McKeating, J., Maurel, P., and Fournier-Wirth, C. (2008) Serum-derived hepatitis C virus infection of primary human hepatocytes is tetraspanin CD81 dependent. J. Virol. 82, 569–574.PubMedGoogle Scholar
  172. 172.
    Mazier, D., Beaudoin, R.L., Mellouk, S., Druilhe, P., Texier, B., Trosper, J., Miltgen, F., Landau, I., Paul, C., Brandicourt, O. et al. (1985) Complete development of hepatic stages of Plasmodium falciparum in vitro. Science 227, 440–442.PubMedGoogle Scholar
  173. 173.
    Mazier, D., Landau, I., Druilhe, P., Miltgen, F., Guguen-Guillouzo, C., Baccam, D., Baxter, J., Chigot, J.P., and Gentilini, M. (1984) Cultivation of the liver forms of Plasmodium vivax in human hepatocytes. Nature 307, 367–369.PubMedGoogle Scholar
  174. 174.
    Prudencio, M., Rodrigues, C.D., Ataide, R., and Mota, M.M. (2008) Dissecting in vitro host cell infection by Plasmodium sporozoites using flow cytometry. Cell Microbiol. 10, 218–224.PubMedGoogle Scholar
  175. 175.
    van Schaijk, B.C., Janse, C.J., van Gemert, G.J., van Dijk, M.R., Gego, A., Franetich, J.F., van de Vegte-Bolmer, M., Yalaoui, S., Silvie, O., Hoffman, S.L., Waters, A.P., Mazier, D., Sauerwein, R.W., and Khan, S.M. (2008) Gene disruption of Plasmodium falciparum p52 results in attenuation of malaria liver stage development in cultured primary human hepatocytes. PLoS ONE 3, e3549.PubMedGoogle Scholar
  176. 176.
    Guillouzo, A., Corlu, A., Aninat, C., Glaise, D., Morel, F., and Guguen-Guillouzo, C. (2007) The human hepatoma HepaRG cells: a highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. Chem. Biol. Interact. 168, 66–73.PubMedGoogle Scholar
  177. 177.
    Spits, C., Mateizel, I., Geens, M., Mertzanidou, A., Staessen, C., Vandeskelde, Y., Van der Elst, J., Liebaers, I., and Sermon, K. (2008) Recurrent chromosomal abnormalities in human embryonic stem cells. Nat. Biotechnol. 26, 1361–1363.PubMedGoogle Scholar
  178. 178.
    Kim, J.B., Sebastiano, V., Wu, G., Arauzo-Bravo, M.J., Sasse, P., Gentile, L., Ko, K., Ruau, D., Ehrich, M., van den Boom, D., Meyer, J., Hubner, K., Bernemann, C., Ortmeier, C., Zenke, M., Fleischmann, B.K., Zaehres, H., and Scholer, H.R. (2009) Oct4-induced pluripotency in adult neural stem cells. Cell 136, 411–419.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.INSERM U522, Régulation des équilibres fonctionnels du foie normal et pathologiqueHopital PontchaillouRennesFrance
  2. 2.INSERM U620, Detoxication et Réparation Tissulaire, Faculté des Sciences Pharmaceutiques et BiologiquesUniversité de Rennes 1RennesFrance

Personalised recommendations