Advertisement

Activation Tagging and Insertional Mutagenesis in Barley

  • Michael A. AyliffeEmail author
  • Anthony J. Pryor
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 678)

Abstract

The process of activation tagging in plants involves the random distribution of plant regulatory sequences throughout the genome. The insertion of a regulatory sequence in the vicinity of an endogenous gene can alter the transcriptional pattern of this gene resulting in a mutant phenotype that arises from excess functional gene product. Activation tagging has been undertaken extensively in a number of dicot plants and also in rice. This has been achieved primarily by high-throughput plant transformation using T-DNA sequences that encode regulatory elements. Apart from rice, most cereals do not have a suitably efficient transformation system for high-throughput transformation. In this article, we detail an activation tagging system in barley that exploits the mobility of the maize Ac/Ds transposable element system to distribute a highly expressed promoter throughout the barley genome. The advantage of this approach in this species is that a relatively small number of primary transgenics are required to generate an activation tagging population. Insertion of this transposable element into genes can also generate insertional inactivation mutants enabling both gene overexpression and gene knockout mutants to be identified in the same population.

Key words

Activation Tagging Barley Transposon Ac Ds 

References

  1. 1.
    Jung, K.-H., An, G., Ronald, P.C. (2008) Towards a better bowl of rice: assigning function to tens of thousands of rice genes. Nat. Rev. Genet. 9, 91–101.PubMedGoogle Scholar
  2. 2.
    Gilchrist, E.J., Haughn, G.W. (2005) TILLING without a plough: a new method with applications for reverse genetics. Curr. Opin. Plant Biol. 8, 211–215.PubMedCrossRefGoogle Scholar
  3. 3.
    Koncz, C., Martini, N., Mayerhofer, R., Konzc-Kalman, Z., Korber, H., Redei, G.P., Schell, J. (1989) High frequency T-DNA-mediated gene tagging in plants. Proc. Nat. Acad. Sci. U. S. A. 86, 8467–8471.CrossRefGoogle Scholar
  4. 4.
    Feldmann, K.A. (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J. 1, 71–82.CrossRefGoogle Scholar
  5. 5.
    Krysan, P.J., Young, J.C., Sussman, M.R. (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11, 2283–2290.PubMedGoogle Scholar
  6. 6.
    Jeon, J.-S., Lee, S., Jung, K.-H., Jun, S.-H., Jeong D.-H., Lee, J., Kim, C., Jang, S., Lee, S., Yang, K., Nam, J., An, K., Han, M.-J., Sung, R.-Y., Choi, H.-S., Yu, J.-H., Choi, J.-H., Cho, S.-Y., Cha, S.-S., Kim, S.-I., An, G. (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561–570.PubMedCrossRefGoogle Scholar
  7. 7.
    Walden, R. (2002) T-DNA tagging in a genomics era. Crit. Rev. Plant Sci. 21, 143–165.CrossRefGoogle Scholar
  8. 8.
    An, G., Lee, S., Kim, S.-H., Kim, S.-R. (2005) Molecular genetics using T-DNA in rice. Plant Cell Physiol. 46, 14–22.PubMedCrossRefGoogle Scholar
  9. 9.
    Long, D., Martin, M., Sundberg, E., Swinburne, J., Puangsomlee, P., Coupland, G. (1993) The maize transposable element system Ac/Ds as a mutagen in Arabidopsis: identification of an albino mutation induced by Ds insertion. Proc. Nat. Acad. Sci. U. S. A. 90, 10370–10374.CrossRefGoogle Scholar
  10. 10.
    Izawa, T., Ohnishi, T., Nakano, T., Ishida, N., Enoki, H., Hashimoto, H., Itoh, K., Terada R., Wu, C., Miyazaki, C., Endo, T., Iida, S., Shimamoto, K. (1997) Transposon tagging in rice. Plant Mol. Biol. 35, 219–229.PubMedCrossRefGoogle Scholar
  11. 11.
    Upadhyaya, N.M., Zhou, X.-R., Zhu, Q.-H., Ramm, K., Wu, L., Eamens, A., Sivakumar, R., Kato, T., Yun, D.-W., Santhoshkumar, C., Narayanan, K.K., Peacock, J.W., Dennis, E.S. (2002) An iAc/Ds gene and enhancer trapping system for insertional mutagenesis in rice. Funct. Plant Biol. 29, 547–559.CrossRefGoogle Scholar
  12. 12.
    Kim, C.M., Piao, H.L., Park, S.J., Chon, N.S., Je, B.I., Sun, B., Park, S.H., Park, J.Y., Lee, E.J., Kim, M.J., Chung, W.S., Lee, K.H., Lee, Y.S., Lee, J.J., Won, Y.J., Yi, G.H., Nam, M.H., Cha, Y.S., Yun, D.W., Eun, M.Y., Han, C.-D. (2004) Rapid, largescale generation of Ds transposant lines and analysis of the Ds insertion sites in rice. Plant J. 39, 252–263.PubMedCrossRefGoogle Scholar
  13. 13.
    Kolesnik, T., Szeverenyi, I., Bachmann, D., Kumar, C.S., Jiang, S., Ramamoorthy, R., Cai, M., Ma, Z.G., Sundaresan, V., Ramachandran, S. (2004) Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences. Plant J. 37, 301–314.PubMedCrossRefGoogle Scholar
  14. 14.
    An, G., Jeong, D.-H., Jung, K.-H., Lee, S. (2005) Reverse genetic approaches for functional genomics of rice. Plant Mol. Biol. 59, 111–123.PubMedCrossRefGoogle Scholar
  15. 15.
    Ayliffe, M.A., Pryor, A.J. (2007) Activation tagging in plants – generation of novel, gain-of-function mutations. Aust. J. Agric. Res. 58, 490–597.CrossRefGoogle Scholar
  16. 16.
    Jeong, D.H., An, S., Park, S., Kang, H.G., Park, G.G., Kim, S.R., Sim, J., Kim, Y.O., Kim, M.K., Kim, S.R., Kim, J., Shin, M., Jung, M., An, G. (2006) Generation of a flanking sequence database for activation-tagging lines in japonica rice. Plant J. 45, 123–132.PubMedCrossRefGoogle Scholar
  17. 17.
    Ayliffe, M.A., Pallotta, M., Langridge, P., Pryor, A.J. (2007) A barley activation tagging system. Plant Mol. Biol. 64, 329–347.PubMedCrossRefGoogle Scholar
  18. 18.
    Ayliffe, M.A., Agostino, A., Clarke, B.C., Furbank, R., von Caemmerer, S., Pryor, A.J. (2009) Suppression of the barley uroporphyrinogen III synthase gene by a Ds activation tagging element generates developmental photosensitivity. Plant Cell 21, 814–831.PubMedCrossRefGoogle Scholar
  19. 19.
    Polhman, R.F., Fedoroff, N.V., Messing, J. (1984) The nucleotide sequence of the maize controlling element Activator. Cell 37, 635–643.CrossRefGoogle Scholar
  20. 20.
    Coupland, G., Plum, C., Chatterjee, S., Post, A., Starlinger, P. (1989) Sequences near the termini are required for transposition of the maize transposon Ac in transgenic tobacco plants. Proc. Natl. Acad. Sci U. S. A. 86, 9385–9388.PubMedCrossRefGoogle Scholar
  21. 21.
    Christensen, A.H., Sharrock, R.A., Quail, P.H. (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by elctroporation. Plant Mol. Biol. 18, 675–689.PubMedCrossRefGoogle Scholar
  22. 22.
    Kumar, S.C., Narayanan, K.K. (1997) Gene and enhancer trap constructs for isolating genetic regions from rice. Rice Biotechnol. Q. 31, 17–18.Google Scholar
  23. 23.
    Tingay, S., McElroy, D., Kalla, R., Fieg, S., Wang, M., Thorton, S., Brettell, R. (1997) Agrobacterium tumefacians-mediated barley transformation. Plant J. 11, 1369–1376.CrossRefGoogle Scholar
  24. 24.
    Liu, Y.-G., Mitsukawa, N., Oosumi, T., Whittier, R.F. (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8, 457–463.PubMedCrossRefGoogle Scholar
  25. 25.
    Helliwell, C.A., Waterhouse, P.M. (2005) Constructs and methods for hairpin RNA-mediated gene silencing in plants. Meth. Enzymol. 392, 24–35.PubMedCrossRefGoogle Scholar
  26. 26.
    Mori, M., Tomita, C., Sugimoto, K., Hasegawa, M., Hayashi, N., Dubouzet, J.G., Ochiai, H., Sekimoto, H., Hirochika, H., Kikuchi, S. (2007) Isolation and molecular characterisation of a Spotted leaf 18 mutant by modified activation tagging in rice. Plant Mol. Biol. 63, 847–860.PubMedCrossRefGoogle Scholar
  27. 27.
    Hsing, Y., Chern, C.G., Fan, M.-J., Lu, P.-C., Chen, K.-T., Lo, S.-F., Sun, P.-K., Ho, Sh.-L., Lee, K.-W., Wang, Y.-C., Huang, W.-L., Ko, S.-S., Chen, S., Chen, J.-L., Chung, C.-I., Lin, Y.-C., Hour, A.-L., Wang, Y.-W., Chang, Y.-C., Tsai, M.-W., Lin, Y.-S., Chen, Y.-C., Yen, H.-M., Li, C.-P., Wey, C.-K., Tseng, C.-S., Lai, M.-H., Huang, S.-C., Chen, L.-J., Yu, S.-M. (2007) A rice activation/knockout mutant resource for high throughput functional genomics. Plant Mol. Biol. 63, 351–364.PubMedCrossRefGoogle Scholar
  28. 28.
    Weigel, D., Ahn, J.H., Blazquez, M.A., Borevitz, J.O., Christensen, S.K., Fankhauser, C., Ferrandiz, C., Kardailsky, I., Malancharuvil, E.J., Neff, M.M., Nguyen, J.T., Sato, S., Wang, Z.-Y., Xia, Y., Dixon, R.A., Harrison, M.J., Lamb, C.J., Yanofsky, M.F., Chort, J. (2000) Activation tagging in Arabidopsis. Plant Physiol. 122, 1003–1013PubMedCrossRefGoogle Scholar
  29. 29.
    Dooner, H., Belachew, A. (1989) Transposition patterns of the maize Ac form by bz-M2 (Ac) allele in maize. Genetics 122, 447–457.PubMedGoogle Scholar
  30. 30.
    Holzberg S., Brosio P., Gross C., Pogue, G.P. (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J. 30, 315–327.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.CSIRO Plant IndustryCanberraAustralia

Personalised recommendations