Reverse Genetics in Medicago truncatula Using Tnt1 Insertion Mutants

  • Xiaofei Cheng
  • Jiangqi Wen
  • Million Tadege
  • Pascal Ratet
  • Kirankumar S. Mysore
Part of the Methods in Molecular Biology book series (MIMB, volume 678)


Medicago truncatula has been chosen as one of the two model species for legume molecular genetics and functional genomics studies. With the imminent completion of M. truncatula genome sequencing, availability of large-scale mutant populations becomes a priority. Over the last 5 years, nearly 12,000 insertion lines, which represent approximately 300,000 insertions, have been generated at the Samuel Roberts Noble Foundation using the tobacco retrotransposon Tnt1. Individual genomic DNA was isolated from each insertion line and pooled into four levels with the super-pool containing 500 lines. Using Tnt1-specific and gene-specific primers, a PCR-based efficient reverse screening strategy has been developed. Amplified PCR products are purified and sequenced to identify the exact insertion locations. Overall, approximately 90% of genes screened were found to have one or more Tnt1 insertions. Therefore, this PCR-based reverse screening is a rapid way of identifying knock-out mutants for specific genes in Tnt1-tagged population of M. truncatula. In addition to the DNA pool screening, a web-based database with more than 13,000 flanking sequence tags (FSTs) has also been set up. One can search the database to find an insertion line for the gene of interest.

Key words

Medicago truncatula Tnt1 Reverse genetics PCR-based screening Mutants 


  1. 1.
    Benetzen J.L. (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol. Biol., 42, 251–269.CrossRefGoogle Scholar
  2. 2.
    Alonso J.M., Stepanova A.N., Leisse T.J., Kim C.J., Chen H., Shinn P., Stevenson D.K., Zimmerman J., Barajas P., Cheuk R., Gadrinab C., Heller C., Jeske A., Koesema E., Meyers C.C., Parker H., Prednis L., Ansari Y., Choy N., Deen H., Geralt M., Hazari N., Hom E., Karnes M., Mulholland C., Ndubaku R., Schmidt I., Guzman P., Aguilar-Henonin L., Schmid M., Weigel D., Carter D.E., Marchand T., Risseeuw E., Brogden D., Zeko A., Crosby W.L., Berry C.C. and Ecker J.R. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 301, 653–657.PubMedCrossRefGoogle Scholar
  3. 3.
    Okamoto H. and Hirochika H. (2000) Efficient insertion mutagenesis of Arabidopsis by tissue culture-induced activation of the tobacco retrotransposon Tto1. Plant J., 23, 291–304.PubMedCrossRefGoogle Scholar
  4. 4.
    Courtial B., Feuerbach F., Eberhard S., Rohmer L., Chiapello H., Camilleri C. and Lucas, H. (2001) Tnt1 transposition events are induced by in vitro transformation of Arabidopsis thaliana, and transposed copies integrate into genes. Mol Genet Genomics, 265, 32–42.PubMedCrossRefGoogle Scholar
  5. 5.
    Yamazaki M., Tsugawa H., Miyao A., Yano M., Wu J., Yamamoto S., Matsumoto T., Sasaki T. and Hirochika H. (2001) The rice retrotransposon Tos17 prefers low-copy-number sequences as integration targets. Mol Genet Genomics, 265, 336–344.PubMedCrossRefGoogle Scholar
  6. 6.
    Grandbastien M.A., Spielmann A. and Caboche M. (1989) Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature, 337, 376–80.PubMedCrossRefGoogle Scholar
  7. 7.
    d’Erfurth I., Cosson V., Eschstruth, A., Lucas, H., Kondorosi A. and Ratet P. (2003) Efficient transposition of the Tnt1 tobacco retrotransposon in the model legume Medicago truncatula. Plant J., 34, 95–106.PubMedCrossRefGoogle Scholar
  8. 8.
    Tadege M., Wen J., He J., Tu H., Kwak Y., Eschstruth A., Cayrel A., Endre G., Zhao P.X., Chabaud M., Ratet P. and Mysore K.S. (2008) Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant J., 54(2), 335–47.PubMedCrossRefGoogle Scholar
  9. 9.
    Benlloch R., d’Erfurth I., Ferrandiz C., Cosson V., Beltran J.P., Canas L.A., Kondorosi A., Madueno F. and Ratet P. (2006) Isolation of mtpim proves Tnt1 a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of AP1-like functions in Legumes. Plant Physiol., 142, 972–983.PubMedCrossRefGoogle Scholar
  10. 10.
    Marsh J.F., Rakocevic A., Mitra R.M., Brocard L., Sun J., Eschstruth A., Long S.R., Schultze M., Ratet P. and Oldroyd G.E.D. (2007) Medicago truncatula NIN is essential for Rhizobial-independent nodule organogenesis induced by autoactive calcium/calmodulin-dependent protein kinase. Plant Physiol., 144, 324–335.PubMedCrossRefGoogle Scholar
  11. 11.
    Wang H., Chen J., Wen J., Tadege M., Li G., Liu Y., Mysore K.S., Ratet P. and Chen R. (2008) Control of compound leaf development by FLO/LFY ortholog Single Leaflet1 (SGL1) in Medicago truncatula. Plant Physiol., 146, 1759–1772.PubMedCrossRefGoogle Scholar
  12. 12.
    Liu Y.G., Mitsukawa N., Oosumi T. and Whittier R.F. (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J., 8, 457–463.PubMedCrossRefGoogle Scholar
  13. 13.
    Liu Y.G., Chen Y. and Zhang Q. (2005) Amplification of genomic sequences flanking T-DNA insertions by thermal asymmetric interlaced polymerase chain reaction. Methods Mol. Biol., 286, 341–348.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Xiaofei Cheng
    • 1
  • Jiangqi Wen
    • 1
  • Million Tadege
    • 1
  • Pascal Ratet
    • 2
  • Kirankumar S. Mysore
    • 1
  1. 1.Plant Biology DivisionThe Samuel Roberts Noble FoundationArdmoreUSA
  2. 2.Institut des Sciences du Vegetal, CNRSGif sur Yvette CedexFrance

Personalised recommendations