RNA Therapeutics pp 53-67

Part of the Methods in Molecular Biology book series (MIMB, volume 629)

Progress in siRNA Delivery Using Multifunctional Nanoparticles

  • Weiwei Gao
  • Zeyu Xiao
  • Alex Radovic-Moreno
  • Jinjun Shi
  • Robert Langer
  • Omid C. Farokhzad
Protocol

Abstract

Nanoparticles made from synthetic polymers have been developed to deliver small interfering RNA (siRNA). For successful siRNA delivery, these nanoparticles need to efficiently encapsulate siRNA, actively target sites of interest, and release siRNA intracellularly. This chapter reviews recent progress using a multifunctional approach to design and engineer polymeric nanoparticles for siRNA delivery.

Key words

Polymer nanoparticles siRNA delivery RNAi 

References

  1. 1.
    Elbashir, S.M., Harborth, J., Lendeckel, W. et al. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411, 494–498.PubMedCrossRefGoogle Scholar
  2. 2.
    Milhavet, O., Gary, D.S., and Mattson, M.P. (2003) RNA interference in biology and medicine. Pharmacol Rev, 55, 629–648.PubMedCrossRefGoogle Scholar
  3. 3.
    Cheng, J.C., Moore, T.B., and Sakamoto, K.M. (2003) RNA interference and human disease. Mol Genet Metab, 80, 121–128.PubMedCrossRefGoogle Scholar
  4. 4.
    Leung, R.K.M. and Whittaker, R.A. (2005) RNA interference: from gene silencing to gene specific therapeutics. Pharmacol Ther, 107, 222–239.PubMedCrossRefGoogle Scholar
  5. 5.
    Drude, I., Dombos, V., Vauleon, S. et al. (2007) Drugs made of RNA: development and applicaiton of engineered RNAs for gene therapy. Mini Rev Med Chem, 7, 912–931.PubMedCrossRefGoogle Scholar
  6. 6.
    Paula, D.D., Bentley, M.V.L.B., and Mahato, R.I. (2007) Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting. RNA, 13, 431–456.PubMedCrossRefGoogle Scholar
  7. 7.
    Fougerolles, A.R. de, Vornlocher, H.-P., Maraganore, J. et al. (2007) Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discovery, 6, 443–453.Google Scholar
  8. 8.
    Fougerolles, A.R. de. (2008) Delivery vehicles for small interfering RNA in vivo. Human Gene Ther, 19, 125–132.CrossRefGoogle Scholar
  9. 9.
    Feinberg, E.H. and Hunter, C.P. (2003) Transport of dsRNA into cells by the transmembrane protein SID-1. Science, 301, 1545–1547.PubMedCrossRefGoogle Scholar
  10. 10.
    Barton, G.M. and Medzhitov, R. (2002) Retroviral delivery of small interfering RNA into primary cells. Proc Natl Acad Sci, 99, 14943–14945.PubMedCrossRefGoogle Scholar
  11. 11.
    Morris, K.V. and Rossi, J.J. (2006) Lentiviral-mediated delivery of siRNA for antiviral therapy. Gene Ther, 13, 553–558.PubMedCrossRefGoogle Scholar
  12. 12.
    Devroe, E. and Silver, P.A. (2004) Therapeutic potential of retroviral RNAi vectors. Expert Opin Biol Ther, 4, 319–327.PubMedCrossRefGoogle Scholar
  13. 13.
    Somia, N. and Verma, I.M. (2000) Gene therapy: trials and tribulations. Nat Rev Genet, 1, 91–99.PubMedCrossRefGoogle Scholar
  14. 14.
    Schaffer, D.V., Koerber, J.T., and Lim, K. (2008) Molecular engineering of viral gene delivery vehicles. Annu Rev Biomed Eng, 10, 169–194.PubMedCrossRefGoogle Scholar
  15. 15.
    Duncan, R. (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discovery, 2, 347–360.CrossRefGoogle Scholar
  16. 16.
    Peer, D., Karp, J.M., Hong, S. et al. (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol, 2, 751–760.PubMedCrossRefGoogle Scholar
  17. 17.
    Davis, M.E., Chen, Z., and Shin, D.M. (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discovery, 7, 771–782.CrossRefGoogle Scholar
  18. 18.
    Putnam, D. (2006) Polymers for gene delivery across length scales. Nat Mater, 5, 439–451.PubMedCrossRefGoogle Scholar
  19. 19.
    Gary, D.J., Puri, N., and Won, Y.-Y. (2007) Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J Control Release, 121, 64–73.PubMedCrossRefGoogle Scholar
  20. 20.
    Bolcato-Bellemin, A.-L., Bonnet, M.-E., Creusat, G. et al. (2007) Sticky overhangs enhance siRNA-mediated gene silencing. Proc Natl Acad Sci, 104, 16050–16055.PubMedCrossRefGoogle Scholar
  21. 21.
    Li, S.-D., Chen, Y.-C., Hackett, M.J. et al. (2007) Tumor-targeted delivery of siRNA by self-assembled nanoparticles. Mol Ther, 16, 163–169.PubMedCrossRefGoogle Scholar
  22. 22.
    Malek, A., Czubzayk, F., and Aigner, A. (2008) PEG grafting of polyethylenimine (PEI) exerts different effects on DNA transfection and siRNA-induced gene targeting efficacy. J Drug Target, 16, 124–139.PubMedCrossRefGoogle Scholar
  23. 23.
    Breunig, M., Hozsa, C., Lungwitz, U. et al. (2008) Mechanistic investigation of poly(ethylene imine)-based siRNA delivery: disulfide bonds boost intracellular release of the cargo. J Control Release, 130, 57–63.PubMedCrossRefGoogle Scholar
  24. 24.
    Zintchenko, A., Philipp, A., Dehshahri, A. et al. (2008) Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjugate Chem, 19, 1448–1455.CrossRefGoogle Scholar
  25. 25.
    Shim, M.S. and Kwon, Y.J. (2008) Controlled delivery of plasmid DNA and siRNA to intracellular targets using ketalized polyethylenimine. Biomacromolecules, 9, 444–455.PubMedCrossRefGoogle Scholar
  26. 26.
    Sun, T.-M., Du, J.-Z., Yan, L.-F. et al. (2008) Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Biomater, 29, 4348–4355.CrossRefGoogle Scholar
  27. 27.
    Tietze, N., Pelisek, J., Philipp, A. et al. (2008) Induction of apoptosis in murine neuroblastoma by systemic delivery of transferrin-shielded siRNA polyplexes for downregulation of Ran. Oligonucleotides, 18, 161–174.PubMedCrossRefGoogle Scholar
  28. 28.
    Jeong, J.H., Christensen, L.V., Yockman, J.W. et al. (2007) Reducible poly(amido ethylenimine) directed to enhance RNA interference. Biomaterials, 28, 1912–1917.CrossRefGoogle Scholar
  29. 29.
    Littlea, S.R. and Kohane, D.S. (2008) Polymers for intracellular delivery of nucleic acids. J Mater Chem, 18, 832–841.CrossRefGoogle Scholar
  30. 30.
    Koa, J., Park, K., Kim, Y.-S. et al. (2007) Tumoral acidic extracellular pH targeting of pH-responsive MPEG-poly (β-amino ester) block copolymer micelles for cancer therapy. J Control Release, 123, 109–115.CrossRefGoogle Scholar
  31. 31.
    Little, S.R., Lynn, D.M., Ge, Q. et al. (2004) Poly-β-amino ester-containing microparticles enhance the activity of nonviral genetic vaccines. Proc Natl Acad Sci, 101, 9534–9539.PubMedCrossRefGoogle Scholar
  32. 32.
    Lynn, D.M., Anderson, D.G., Putnam, D. et al. (2001) Accelerated discovery of synthetic transfection vectors: parallel synthesis and screening of a degradable polymer library. J Am Chem Soc, 123, 8155–8156.PubMedCrossRefGoogle Scholar
  33. 33.
    Anderson, D.G., Lynn, D.M., and Langer, R. (2003) Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angew Chem Int Ed, 42, 3153–3158.CrossRefGoogle Scholar
  34. 34.
    Jere, D., Xu, C.-X., Arote, R. et al. (2008) Poly(β-amino ester) as a carrier for si/shRNA delivery in lung cancer cells. Biomaterials, 29, 2535–2547.PubMedCrossRefGoogle Scholar
  35. 35.
    Tseng, S.-J. and Tang, S.-C. (2007) Development of poly(amino ester glycol urethane)/siRNA polyplexes for gene silencing. Bioconjuate Chem, 18, 1383–1390.CrossRefGoogle Scholar
  36. 36.
    Akin, A., Andreas, Z., Michael, G. et al. (2008) A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol, 26, 561–569.CrossRefGoogle Scholar
  37. 37.
    Toub, N., Bertrand, J.-R., Tamaddon, A. et al. (2006) Efficacy of siRNA nanocapsules targeted against the EWS-Fli1 oncogene in Ewing Sarcoma. Pharm Res, 23, 892–900.PubMedCrossRefGoogle Scholar
  38. 38.
    Cheng, J., Teply, B.A., Sherifi, I. et al. (2007) Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials, 28, 869–876.PubMedCrossRefGoogle Scholar
  39. 39.
    Farokhzad, O.C., Cheng, J., Teply, B.A. et al. (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci, 103, 6315–6320.PubMedCrossRefGoogle Scholar
  40. 40.
    Gu, F., Zhang, L., Teply, B.A. et al. (2007) Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci, 105, 2586–2591.CrossRefGoogle Scholar
  41. 41.
    Imamura, O., Okada, H., Takashima, Y. et al. (2008) siRNA-mediated Erc gene silencing suppresses tumor growth in Tsc2 mutant renal carcinoma model. Cancer Lett, 268, 278–285.PubMedCrossRefGoogle Scholar
  42. 42.
    Woodrow, K.A., Cu, Y., Booth, C.J. et al. (2009) Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nat Mater, 8, 526–533.PubMedCrossRefGoogle Scholar
  43. 43.
    Emerich, D.F. and Thanos, C.G. (2008) Multifunctional peptide-based nanosystems for improving delivery and molecular imaging. Curr Opin Mol Ther, 10, 132–139.PubMedGoogle Scholar
  44. 44.
    Kubo, T., Zhelev, Z., Ohba, H. et al. (2007) Modified 27-nt dsRNAs with dramatically enhanced stability in serum and long-term RNAi activity. Oligonucleotides, 17, 445–464.PubMedCrossRefGoogle Scholar
  45. 45.
    Wolfrum, C., Shi, S., Jayaprakash, K.N. et al. (2007) Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol, 25, 1149–1157.PubMedCrossRefGoogle Scholar
  46. 46.
    Nicolas, J., Mantovani, G., and Haddleton, D.M. (2007) Living radical polymerization as a tool for the synthesis of polymer-protein/peptide bioconjugates. Macromol Rapid Commun, 28, 1083–1111.CrossRefGoogle Scholar
  47. 47.
    Chu, T.C., Twu, K.Y., Ellington, A.D. et al. (2006) Aptamer mediated siRNA delivery. Nucl Acids Res, 34, e73.Google Scholar
  48. 48.
    Moad, G., Rizzardo, E., and Thang, S.H. (2008) Toward living radical polymerization. Acc Chem Res, 41, 1133–1142.PubMedCrossRefGoogle Scholar
  49. 49.
    Stenzel, M.H. (2008) RAFT polymerization: an avenue to functional polymeric micelles for drug delivery. Chem Commun, 30, 3486–3503.CrossRefGoogle Scholar
  50. 50.
    Heredia, K.L., Nguyen, T.H., Chang, C.-W. et al. (2008) Reversible siRNA-polymer conjugates by RAFT polymerization. Chem Commun, 28, 3245–3247.CrossRefGoogle Scholar
  51. 51.
    Oishi, M., Nagasaki, Y., Itaka, K. et al. (2005) Lactosylated poly(ethylene glycol)-siRNA conjugate through acid-labile b-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J Am Chem Soc, 127, 1624–1625.PubMedCrossRefGoogle Scholar
  52. 52.
    Rozema, D.B., Lewis, D.L., Wakefield, D.H. et al. (2007) Dynamic polyconjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Natl Acad Sci, 104, 12982–12987.PubMedCrossRefGoogle Scholar
  53. 53.
    Song, E., Lee, S.-K., Wang, J. et al. (2003) RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med, 9, 347–351.PubMedCrossRefGoogle Scholar
  54. 54.
    Vornlocher, H.-P. (2006) Antibody-directed cell-type-specific delivery of siRNA. Trends Mol Med, 12, 1–3.PubMedCrossRefGoogle Scholar
  55. 55.
    Peer, D., Park, E.J., Morishita, Y. et al. (2008) Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science, 319, 627–630.PubMedCrossRefGoogle Scholar
  56. 56.
    Song, E., Zhu, P., Lee, S.-K. et al. (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol, 23, 709–717.PubMedCrossRefGoogle Scholar
  57. 57.
    Kumar, P., Wu, H., McBride, J.L. et al. (2007) Transvascular delivery of small interfering RNA to the central nervous system. Nature, 448, 39–43.PubMedCrossRefGoogle Scholar
  58. 58.
    Head, J.F., Wang, F., and Elliott, R.L. (1997) Antineoplastic drugs that interfere with iron metabolism in cancer cells. Advan Enzyme Regul, 37, 147–169.CrossRefGoogle Scholar
  59. 59.
    Rainov, N.G. and Soling, A. (2005) Technology evaluation: TransMID, KS Biomedix/Nycomed/Sosei/PharmaEngine. Curr Opin Mol Ther, 7, 483–492.PubMedGoogle Scholar
  60. 60.
    Heidel, J.D., Yu, Z., Liu, J.Y.-C. et al. (2007) Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc Natl Acad Sci, 104, 5715–5721.PubMedCrossRefGoogle Scholar
  61. 61.
    Lundberg, M., Wikstrom, S., and Johansson, M. (2003) Cell surface adherence and endocytosis of protein transduction domains. Mol Ther, 8, 143–150.PubMedCrossRefGoogle Scholar
  62. 62.
    Schiffelers, R.M., Ansari, A., Xu, J. et al. (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucl Acids Res, 32, e149.Google Scholar
  63. 63.
    Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 249, 505–510.PubMedCrossRefGoogle Scholar
  64. 64.
    McNamara, J.O., Andrechek, E.R., Wang, Y. et al. (2006) Cell type–specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol, 24, 1005–1015.PubMedCrossRefGoogle Scholar
  65. 65.
    Zhou, J., Li, H., Li, S. et al. (2008) Novel dual inhibitory function aptamer–siRNA delivery system for HIV-1 therapy. Mol Ther, 16, 1481–1489.PubMedCrossRefGoogle Scholar
  66. 66.
    Zhao, X.B., Li, H., and Lee, R.J. (2008) Targeted drug delivery via folate receptors. Expert Opin Drug Deliv, 5, 309–319.PubMedCrossRefGoogle Scholar
  67. 67.
    Kima, S.H., Jeonga, J.H., Choa, K.C. et al. (2005) Target-specific gene silencing by siRNA plasmid DNA complexed with folate-modified poly(ethylenimine). J Control Release, 104, 223–232.CrossRefGoogle Scholar
  68. 68.
    Behr, J.-P. (1997) The proton sponge: a trick to enter cells the viruses did not exploit. CHIMIA, 51, 34–36.Google Scholar
  69. 69.
    Stevenson, M., Ramos-Perez, V., Singh, S. et al. (2008) Delivery of siRNA mediated by histidine-containing reducible polycations. J Control Release, 130, 46–56.PubMedCrossRefGoogle Scholar
  70. 70.
    Leng, Q., Scaria, P., Lu, P. et al. (2008) Systemic delivery of HK Raf-1 siRNA polyplexes inhibits MDA-MB-435 xenografts. Cancer Gene Ther, 15, 485–495.PubMedCrossRefGoogle Scholar
  71. 71.
    Kumar, V.V., Pichon, C., Refregiers, M. et al. (2003) Single histidine residue in head-group region is sufficient to impart remarkable gene transfection properties to cationic lipids: evidence for histidine-mediated membrane fusion at acidic pH. Gene Ther, 10, 1206–1215.PubMedCrossRefGoogle Scholar
  72. 72.
    Takae, S., Miyata, K., Oba, M. et al. (2008) PEG-detachable polyplex micelles based on disulfide-linked block catiomers as bioresponsive nonviral gene vectors. J Am Chem Soc, 130, 6001–6009.PubMedCrossRefGoogle Scholar
  73. 73.
    Holowka, E.P., Sun, V.Z., Kamei, D.T. et al. (2007) Polyarginine segments in block copolypeptides drive both vesicular assembly and intracellular delivery. Nat Mater, 6, 52–57.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Weiwei Gao
    • 1
  • Zeyu Xiao
    • 1
  • Alex Radovic-Moreno
    • 2
  • Jinjun Shi
    • 1
  • Robert Langer
    • 2
  • Omid C. Farokhzad
    • 1
  1. 1.Laboratory of Nanomedicine and Biomaterials, Department of AnesthesiaBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Harvard-MIT Center of Cancer Nanotechnology Excellence, Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations