Advertisement

Non-MHC-Dependent Redirected T Cells Against Tumor Cells

  • Hilde Almåsbak
  • Marianne Lundby
  • Anne-Marie Rasmussen
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 629)

Abstract

Adoptive transfer of T cells with restricted tumor specificity provides a promising approach to immunotherapy of cancers. However, the isolation of autologous cytotoxic T cells that recognize tumor-associated antigens is time consuming and fails in many instances. Alternatively, gene modification with tumor antigen-specific T-cell receptors (TCR) or chimeric antigen receptors (CARs) can be used to redirect the specificity of large numbers of immune cells toward the malignant cells. Chimeric antigen receptors are composed of the single-chain variable fragment (scFv) of a tumor-recognizing antibody cloned in frame with human T-cell signaling domains (e.g., CD3ζ, CD28, OX40, 4-1BB), thus combining the specificity of antibodies with the effector functions of cytotoxic T cells. Upon antigen binding, the intracellular signaling domains of the CAR initiate cellular activation mechanisms including cytokine secretion and cytolysis of the antigen-positive target cell.

In this chapter, we provide detailed protocols for large-scale ex vivo expansion of T cells and manufacturing of medium-scale batches of CAR-expressing T cells for translational research by mRNA electroporation. An anti-CD19 chimeric receptor for the targeting of leukemias and lymphomas was used as a model system. We are currently scaling up the protocols to adapt them to cGMP production of a large number of redirected T cells for clinical applications

Key words

mRNA electroporation chimeric antigen receptor gene therapy T lymphocytes 

Notes

Acknowledgments

This work was supported in part by CHILDHOPE (EU contract #037381) and the authors would like to thank Dr. Martin Pulè at UCL Cancer Institute, University College London, UK, for providing the vector for the chimeric antigen receptor. The authors would also thank Dr. Stein Sæebøe-Larssen at our laboratory for providing the pCIpA102 expression vector and Dr. Rainer Loew at EUFETS, Idar-Oberstein, Germany, for the IRES-EGFP construct.

References

  1. 1.
    June, C.H. (2007) Adoptive T cell therapy for cancer in the clinic. J Clin Invest, 117(6), 1466–1476.PubMedCrossRefGoogle Scholar
  2. 2.
    Dudley, M.E., Wunderlich, J.R., Yang, J.C., Sherry, R.M., Topalian, S.L., Restifo, N.P., Royal, R.E., Kammula, U., White, D.E., Mavroukakis, S.A. et al. (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol, 23(10), 2346–2357.PubMedCrossRefGoogle Scholar
  3. 3.
    Leen, A.M., Rooney, C.M., and Foster, A.E. (2007) Improving T cell therapy for cancer. Annu Rev Immunol, 25, 243–265.PubMedCrossRefGoogle Scholar
  4. 4.
    Porter, D.L. and Antin, J.H. (2006) Donor leukocyte infusions in myeloid malignancies: new strategies. Best Pract Res Clin Haematol, 19(4), 737–755.PubMedCrossRefGoogle Scholar
  5. 5.
    Rosenberg, S.A. and Dudley, M.E. (2004) Cancer regression in patients with metastatic melanoma after the transfer of autologous antitumor lymphocytes. Proc Natl Acad Sci USA, 101(Suppl 2), 14639–14645.PubMedCrossRefGoogle Scholar
  6. 6.
    Rosenberg, S.A., Restifo, N.P., Yang, J.C., Morgan, R.A., and Dudley, M.E. (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer, 8(4), 299–308.PubMedCrossRefGoogle Scholar
  7. 7.
    Yee, C., Thompson, J.A., Byrd, D., Riddell, S.R., Roche, P., Celis, E., and Greenberg, P.D. (2002) Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA, 99(25), 16168–16173.PubMedCrossRefGoogle Scholar
  8. 8.
    June, C.H. (2007) Principles of adoptive T cell cancer therapy. J Clin Invest, 117(5), 1204–1212.PubMedCrossRefGoogle Scholar
  9. 9.
    Berger, C., Jensen, M.C., Lansdorp, P.M., Gough, M., Elliott, C., and Riddell, S.R. (2007) Adoptive transfer of effector CD8 T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest, 118(1), 294–305.CrossRefGoogle Scholar
  10. 10.
    Perret, R. and Ronchese, F. (2008) Memory T cells in cancer immunotherapy: which CD8(+) T-cell population provides the best protection against tumours? Tissue Antigens, 72(3), 187–194.PubMedCrossRefGoogle Scholar
  11. 11.
    de Visser, K.E., Schumacher, T.N., and Kruisbeek, A.M. (2003) CD8+ T cell tolerance and cancer immunotherapy. J Immunother (1997), 26(1), 1–11.CrossRefGoogle Scholar
  12. 12.
    Gattinoni, L., Powell, D.J., Jr., Rosenberg, S.A., and Restifo, N.P. (2006) Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol, 6(5), 383–393.PubMedCrossRefGoogle Scholar
  13. 13.
    Morgan, R.A., Dudley, M.E., Wunderlich, J.R., Hughes, M.S., Yang, J.C., Sherry, R.M., Royal, R.E., Topalian, S.L., Kammula, U.S., Restifo, N.P. et al. (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science, 314(5796), 126–129.PubMedCrossRefGoogle Scholar
  14. 14.
    Cooper, L.J., Al-Kadhimi, Z., DiGiusto, D., Kalos, M., Colcher, D., Raubitschek, A., Forman, S.J., and Jensen, M.C. (2004) Development and application of CD19-specific T cells for adoptive immunotherapy of B cell malignancies. Blood Cells Mol Dis, 33(1), 83–89.PubMedCrossRefGoogle Scholar
  15. 15.
    Eshhar, Z. (2008) The T-body approach: redirecting T cells with antibody specificity. Handb Exp Pharmacol, 181, 329–342.PubMedCrossRefGoogle Scholar
  16. 16.
    Emtage, P.C.R., Lo, A.S.Y., Gomes, E.M., Liu, D.L., Gonzalo-Daganzo, R.M., and Junghans, R.P. (2008) Second-generation anti-carcinoembryonic antigen designer T cells resist activation-induced cell death, proliferate on tumor contact, secrete cytokines, and exhibit superior antitumor activity in vivo: a preclinical evaluation. Clin Cancer Res, 14, 8112–8122.PubMedCrossRefGoogle Scholar
  17. 17.
    Yu, K., Hu, Y., Tan, Y., Shen, Z., Jiang, S., Qian, H., Liang, B., and Shan, D. (2008) Immunotherapy of lymphomas with T cells modified by anti-CD20 scFv/CD28/CD3zeta recombinant gene. Leuk Lymphoma, 49(7), 1368–1373.PubMedCrossRefGoogle Scholar
  18. 18.
    Sadelain, M., Riviere, I., and Brentjens, R. (2003) Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer, 3(1), 35–45.PubMedCrossRefGoogle Scholar
  19. 19.
    Aptsiauri, N., Cabrera, T., Garcia-Lora, A., Lopez-Nevot, M.A., Ruiz-Cabello, F., and Garrido, F. (2007) MHC Class I antigens and immune surveillance in transformed cells. In: Kwang, W.J. (Ed.) International Review of Cytology a Survey of Cell Biology. Academic Press, New York, pp. 139–189.Google Scholar
  20. 20.
    Engels, B. and Uckert, W. (2007) Redirecting T lymphocyte specificity by T cell receptor gene transfer – a new era for immunotherapy. Mol Aspects Med, 28(1), 115–142.PubMedCrossRefGoogle Scholar
  21. 21.
    Uckert, W. and Schumacher, T.N. (2009) TCR transgenes and transgene cassettes for TCR gene therapy: status in 2008. Cancer Immunol Immunother, 58(5), 809–822.PubMedCrossRefGoogle Scholar
  22. 22.
    Mezzanzanica, D., Canevari, S., Mazzoni, A., Figini, M., Colnaghi, M.I., Waks, T., Schindler, D.G., and Eshhar, Z. (1998) Transfer of chimeric receptor gene made of variable regions of tumor-specific antibody confers anticarbohydrate specificity on T cells. Cancer Gene Ther, 5(6), 401–407.PubMedGoogle Scholar
  23. 23.
    Krause, A., Guo, H.F., Latouche, J.B., Tan, C., Cheung, N.K., and Sadelain, M. (1998) Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. J Exp Med, 188(4), 619–626.PubMedCrossRefGoogle Scholar
  24. 24.
    Yun, C.O., Nolan, K.F., Beecham, E.J., Reisfeld, R.A., and Junghans, R.P. (2000) Targeting of T lymphocytes to melanoma cells through chimeric anti-GD3 immunoglobulin T-cell receptors. Neoplasia, 2(5), 449–459.PubMedCrossRefGoogle Scholar
  25. 25.
    Westwood, J.A., Murray, W.K., Trivett, M., Haynes, N.M., Solomon, B., Mileshkin, L., Ball, D., Michael, M., Burman, A., Mayura-Guru, P. et al. (2009) The Lewis-Y carbohydrate antigen is expressed by many human tumors and can serve as a target for genetically redirected T cells despite the presence of soluble antigen in serum. J Immunother, 32(3), 292–301.PubMedCrossRefGoogle Scholar
  26. 26.
    Kennedy, R. and Celis, E. (2008) Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol Rev, 222, 129–144.PubMedCrossRefGoogle Scholar
  27. 27.
    Elinav, E., Waks, T., and Eshhar, Z. (2008) Redirection of regulatory T cells with predetermined specificity for the treatment of experimental colitis in mice. Gastroenterology, 134(7), 2014–2024.PubMedCrossRefGoogle Scholar
  28. 28.
    Eran, E., Nitzan, A., Tova, W., and Eshhar, Z. (2009) Amelioration of colitis by genetically engineered murine regulatory T cells redirected by antigen-specific chimeric receptor. Gastroenterology, 136(5), 1721–1731.CrossRefGoogle Scholar
  29. 29.
    Boissel, L., Betancur, M., Wels, W.S., Tuncer, H., and Klingemann, H. (2009) Transfection with mRNA for CD19 specific chimeric antigen receptor restores NK cell mediated killing of CLL cells. Leukemia Res, 33(9), 1255–1259.CrossRefGoogle Scholar
  30. 30.
    Uherek, C., Tonn, T., Uherek, B., Becker, S., Schnierle, B., Klingemann, H.G., and Wels, W. (2002) Retargeting of natural killer-cell cytolytic activity to ErbB2-expressing cancer cells results in efficient and selective tumor cell destruction. Blood, 100(4), 1265–1273.PubMedGoogle Scholar
  31. 31.
    Muller, T., Uherek, C., Maki, G., Chow, K.U., Schimpf, A., Klingemann, H.G., Tonn, T., and Wels, W.S. (2008) Expression of a CD20-specific chimeric antigen receptor enhances cytotoxic activity of NK cells and overcomes NK-resistance of lymphoma and leukemia cells. Cancer Immunol Immunother, 57(3), 411–423.PubMedCrossRefGoogle Scholar
  32. 32.
    Rischer, M., Pscherer, S., Duwe, S., Vormoor, J., Jurgens, H., and Rossig, C. (2004) Human gammadelta T cells as mediators of chimaeric-receptor redirected anti-tumour immunity. Br J Haematol, 126(4), 583–592.PubMedCrossRefGoogle Scholar
  33. 33.
    Eshhar, Z., Waks, T., Gross, G., and Schindler, D.G. (1993) Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA, 90(2), 720–724.PubMedCrossRefGoogle Scholar
  34. 34.
    Hombach, A. and Abken, H. (2007) Costimulation tunes tumor-specific activation of redirected T cells in adoptive immunotherapy. Cancer Immunol Immunother, 56(5), 731–737.PubMedCrossRefGoogle Scholar
  35. 35.
    Finney, H.M., Lawson, A.D., Bebbington, C.R., and Weir, A.N. (1998) Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J Immunol, 161(6), 2791–2797.PubMedGoogle Scholar
  36. 36.
    Pule, M.A., Straathof, K.C., Dotti, G., Heslop, H.E., Rooney, C.M., and Brenner, M.K. (2005) A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther, 12(5), 933–941.PubMedCrossRefGoogle Scholar
  37. 37.
    Carpenito, C., Milone, M.C., Hassan, R., Simonet, J.C., Lakhal, M., Suhoski, M.M., Varela-Rohena, A., Haines, K.M., Heitjan, D.F., Albelda, S.M. et al. (2009) Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci USA, 106(9), 3360–3365.PubMedCrossRefGoogle Scholar
  38. 38.
    Finney, H.M., Akbar, A.N., and Lawson, A.D. (2004) Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. J Immunol, 172(1), 104–113.PubMedGoogle Scholar
  39. 39.
    Cotrim, A.P. and Baum, B.J. (2008) Gene therapy: some history, applications, problems, and prospects. Toxicol Pathol, 36, 97–103.PubMedCrossRefGoogle Scholar
  40. 40.
    Hacein-Bey-Abina, S., Garrigue, A., Wang, G.P., Soulier, J., Lim, A., Morillon, E., Clappier, E., Caccavelli, L., Delabesse, E., Beldjord, K. et al. (2008) Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest, 118(9), 3132–3142.PubMedCrossRefGoogle Scholar
  41. 41.
    Ott, M.G., Schmidt, M., Schwarzwaelder, K., Stein, S., Siler, U., Koehl, U., Glimm, H., Kuhlcke, K., Schilz, A., Kunkel, H. et al. (2006) Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med, 12, 401–409.PubMedCrossRefGoogle Scholar
  42. 42.
    Hege, K.M. and Roberts, M.R. (1996) T-cell gene therapy. Curr Opin Biotechnol, 7(6), 629–634.PubMedCrossRefGoogle Scholar
  43. 43.
    Muul, L.M., Tuschong, L.M., Soenen, S.L., Jagadeesh, G.J., Ramsey, W.J., Long, Z., Carter, C.S., Garabedian, E.K., Alleyne, M., Brown, M. et al. (2003) Persistence and expression of the adenosine deaminase gene for 12 years and immune reaction to gene transfer components: long-term results of the first clinical gene therapy trial. Blood, 101, 2563–2569.PubMedCrossRefGoogle Scholar
  44. 44.
    Muul, L.M. and Candotti, F. (2007) Immune responses to gene-modified T cells. Curr Gene Ther, 7(5), 361–368.PubMedCrossRefGoogle Scholar
  45. 45.
    Newrzela, S., Cornils, K., Li, Z., Baum, C., Brugman, M.H., Hartmann, M., Meyer, J., Hartmann, S., Hansmann, M.L., Fehse, B. et al. (2008) Resistance of mature T cells to oncogene transformation. Blood, 112, 2278–2286.PubMedCrossRefGoogle Scholar
  46. 46.
    Westwood, J.A., Murray, W.K., Trivett, M., Shin, A., Neeson, P., Macgregor, D.P., Haynes, N.M., Trapani, J.A., Mayura-Guru, P., Fox, S. et al. (2008) Absence of retroviral vector-mediated transformation of gene-modified T cells after long-term engraftment in mice. Gene Ther, 15, 1056–1066.PubMedCrossRefGoogle Scholar
  47. 47.
    Lamers, C.H., Sleijfer, S., Vulto, A.G., Kruit, W.H., Kliffen, M., Debets, R., Gratama, J.W., Stoter, G., and Oosterwijk, E. (2006) Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol, 24(13), e20–e22.PubMedCrossRefGoogle Scholar
  48. 48.
    Bonini, C., Bondanza, A., Perna, S.K., Kaneko, S., Traversari, C., Ciceri, F., and Bordignon, C. (2007) The suicide gene therapy challenge: how to improve a successful gene therapy approach. Mol Ther, 15(7), 1248–1252.PubMedCrossRefGoogle Scholar
  49. 49.
    Sullenger, B.A. and Gilboa, E. (2002) Emerging clinical applications of RNA. Nature, 418, 252–258.PubMedCrossRefGoogle Scholar
  50. 50.
    Gilboa, E. and Vieweg, J. (2004) Cancer immunotherapy with mRNA-transfected dendritic cells. Immunol Rev, 199, 251–263.PubMedCrossRefGoogle Scholar
  51. 51.
    Kyte, J.A. and Gaudernack, G. (2006) Immuno-gene therapy of cancer with tumour-mRNA transfected dendritic cells. Cancer Immunol Immunother, 55(11), 1432–1442.PubMedCrossRefGoogle Scholar
  52. 52.
    Zhao, Y., Zheng, Z., Cohen, C.J., Gattinoni, L., Palmer, D.C., Restifo, N.P., Rosenberg, S.A., and Morgan, R.A. (2006) High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation. Mol Ther, 13(1), 151–159.PubMedCrossRefGoogle Scholar
  53. 53.
    Rabinovich, P.M., Komarovskaya, M.E., Ye, Z.J., Imai, C., Campana, D., Bahceci, E., and Weissman, S.M. (2006) Synthetic messenger RNA as a tool for gene therapy. Hum Gene Ther, 17(10), 1027–1035.PubMedCrossRefGoogle Scholar
  54. 54.
    Yoon, S.H., Lee, J.M., Cho, H.I., Kim, E.K., Kim, H.S., Park, M.Y., and Kim, T.G. (2008) Adoptive immunotherapy using human peripheral blood lymphocytes transferred with RNA encoding Her-2//neu-specific chimeric immune receptor in ovarian cancer xenograft model. Cancer Gene Ther, 16, 489–497.PubMedCrossRefGoogle Scholar
  55. 55.
    Birkholz, K., Hombach, A., Krug, C., Reuter, S., Kershaw, M., Kampgen, E., Schuler, G., Abken, H., Schaft, N., and Dorrie, J. (2009) Transfer of mRNA encoding recombinant immunoreceptors reprograms CD4+ and CD8+ T cells for use in the adoptive immunotherapy of cancer. Gene Ther, 16, 596–604.PubMedCrossRefGoogle Scholar
  56. 56.
    Robbins, P.F., Dudley, M.E., Wunderlich, J., El-Gamil, M., Li, Y.F., Zhou, J., Huang, J., Powell, D.J., Jr., and Rosenberg, S.A. (2004) Cutting edge: persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J Immunol, 173(12), 7125–7130.PubMedGoogle Scholar
  57. 57.
    Mitchell, D.A., Karikari, I., Cui, X., Xie, W., Schmittling, R., and Sampson, J.H. (2008) Selective modification of antigen-specific T cells by RNA electroporation. Hum Gene Ther, 19(5), 511–521.PubMedCrossRefGoogle Scholar
  58. 58.
    Kershaw, M.H., Wang, G., Westwood, J.A., Pachynski, R.K., Tiffany, H.L., Marincola, F.M., Wang, E., Young, H.A., Murphy, P.M., and Hwu, P. (2002) Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum Gene Ther, 13(16), 1971–1980.PubMedCrossRefGoogle Scholar
  59. 59.
    Yin, J., Ma, Z., Selliah, N., Shivers, D.K., Cron, R.Q., and Finkel, T.H. (2006) Effective gene suppression using small interfering RNA in hard-to-transfect human T cells. J Immunol Methods, 312(1–2), 1–11.PubMedCrossRefGoogle Scholar
  60. 60.
    Mantei, A., Rutz, S., Janke, M., Kirchhoff, D., Jung, U., Patzel, V., Vogel, U., Rudel, T., Andreou, I., Weber, M. et al. (2008) siRNA stabilization prolongs gene knockdown in primary T lymphocytes. Eur J Immunol, 38(9), 2616–2625.PubMedCrossRefGoogle Scholar
  61. 61.
    Thomas, D.A. and Massagu, J. (2005) TGF-[beta] directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell, 8, 369–380.PubMedCrossRefGoogle Scholar
  62. 62.
    Walczak, P., Ruiz-Cabello, J., Kedziorek, D.A., Gilad, A.A., Lin, S., Barnett, B., Qin, L., Levitsky, H., and Bulte, J.W.M. (2006) Magnetoelectroporation: improved labeling of neural stem cells and leukocytes for cellular magnetic resonance imaging using a single FDA-approved agent. Nanomed Nanotechnol Biol Med, 2, 89–94.CrossRefGoogle Scholar
  63. 63.
    Long, C.M. and Bulte, J.W. (2009) In vivo tracking of cellular therapeutics using magnetic resonance imaging. Expert Opin Biol Ther, 9(3), 293–306.PubMedCrossRefGoogle Scholar
  64. 64.
    drup-Link, H.E., Meier, R., Rudelius, M., Piontek, G., Piert, M., Metz, S., Settles, M., Uherek, C., Wels, W., Schlegel, J. et al. (2005) In vivo tracking of genetically engineered, anti-HER2/neu directed natural killer cells to HER2/neu positive mammary tumors with magnetic resonance imaging. Eur Radiol, 15(1), 4–13.CrossRefGoogle Scholar
  65. 65.
    CD19 Chimeric Receptor Expressing T Lymphocytes in B-Cell Non Hodgkin’s Lymphoma and Chronic Lymphocytic Leukemia. (NCT00586391). 2008. Baylor College of Medicine. Ref Type: CaseGoogle Scholar
  66. 66.
    Roger Williams Medical Center. Trial of Anti-PSMA Designer T Cells in Advanced Prostate Cancer after Non-Myeloablative Conditioning. ClinicalTrials.gov. 2008. Ref Type: Electronic CitationGoogle Scholar
  67. 67.
    Rosenberg, S.A., Packard, B.S., Aebersold, P.M., Solomon, D., Topalian, S.L., Toy, S.T., Simon, P., Lotze, M.T., Yang, J.C., Seipp, C.A. et al. (1988) Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med, 319(25), 1676–1680.Google Scholar
  68. 68.
    Levine, B.L., Cotte, J., Small, C.C., Carroll, R.G., Riley, J.L., Bernstein, W.B., Van Epps, D.E., Hardwick, R.A., and June, C.H. (1998) Large-scale production of CD4+ T cells from HIV-1-infected donors after CD3/CD28 costimulation. J Hematother, 7(5), 437–448.PubMedCrossRefGoogle Scholar
  69. 69.
    Levine, B.L., Mosca, J.D., Riley, J.L., Carroll, R.G., Vahey, M.T., Jagodzinski, L.L., Wagner, K.F., Mayers, D.L., Burke, D.S., Weislow, O.S. et al. (1996) Antiviral effect and ex vivo CD4+ T cell proliferation in HIV-positive patients as a result of CD28 costimulation. Science, 272(5270), 1939–1943.PubMedCrossRefGoogle Scholar
  70. 70.
    Levine, B.L., Bernstein, W.B., Connors, M., Craighead, N., Lindsten, T., Thompson, C.B., and June, C.H. (1997) Effects of CD28 costimulation on long-term proliferation of CD4+ T cells in the absence of exogenous feeder cells. J Immunol, 159, 5921–5930.PubMedGoogle Scholar
  71. 71.
    Bonyhadi, M., Frohlich, M., Rasmussen, A., Ferrand, C., Grosmaire, L., Robinet, E., Leis, J., Maziarz, R.T., Tiberghien, P., and Berenson, R.J. (2005) In vitro engagement of CD3 and CD28 corrects T cell defects in chronic lymphocytic leukemia. J Immunol, 174(4), 2366–2375.PubMedGoogle Scholar
  72. 72.
    Garlie, N.K., LeFever, A.V., Siebenlist, R.E., Levine, B.L., June, C.H., and Lum, L.G. (1999) T cells coactivated with immobilized anti-CD3 and anti-CD28 as potential immunotherapy for cancer. J Immunother, 22(4), 336–345.PubMedCrossRefGoogle Scholar
  73. 73.
    Porter, D.L., Levine, B.L., Bunin, N., Stadtmauer, E.A., Luger, S.M., Goldstein, S., Loren, A., Phillips, J., Nasta, S., Perl, A. et al. (2006) A phase 1 trial of donor lymphocyte infusions expanded and activated ex vivo via CD3/CD28 costimulation. Blood, 107(4), 1325–1331.PubMedCrossRefGoogle Scholar
  74. 74.
    Thompson, J.A., Figlin, R.A., Sifri-Steele, C., Berenson, R.J., and Frohlich, M.W. (2003) A phase I trial of CD3/CD28-activated T cells (Xcellerated T cells) and interleukin-2 in patients with metastatic renal cell carcinoma. Clin Cancer Res, 9(10 Pt 1), 3562–3570.PubMedGoogle Scholar
  75. 75.
    Hami, L.S., Green, C., Leshinsky, N., Markham, E., Miller, K., and Craig, S. (2004) GMP production and testing of Xcellerated T cells for the treatment of patients with CLL. Cytotherapy, 6(6), 554–562.PubMedCrossRefGoogle Scholar
  76. 76.
    Kalamasz, D., Long, S.A., Taniguchi, R., Buckner, J.H., Berenson, R.J., and Bonyhadi, M. (2004) Optimization of human T-cell expansion ex vivo using magnetic beads conjugated with anti-CD3 and anti-CD28 antibodies. J Immunother (1997), 27(5), 405–418.CrossRefGoogle Scholar
  77. 77.
    Hami, L.S., Harjinder, C., Yan, V., and Craig, S. (2003) Comparison of a static process and the bioreactor-based process for the GMP manufacture of autologous Xcellerated T cells for clinical trials. BioProcessing J, 2, 1–10.Google Scholar
  78. 78.
    Berger, C., Blau, C.A., Clackson, T., Riddell, S.R., and Heimfeld, S. (2003) CD28 costimulation and immunoaffinity-based selection efficiently generate primary gene-modified T cells for adoptive immunotherapy. Blood, 101, 476–484.PubMedCrossRefGoogle Scholar
  79. 79.
    Levine, B.L., Bernstein, W.B., Aronson, N.E., Schlienger, K., Cotte, J., Perfetto, S., Humphries, M.J., Ratto-Kim, S., Birx, D.L., Steffens, C. et al. (2002) Adoptive transfer of costimulated CD4+ T cells induces expansion of peripheral T cells and decreased CCR5 expression in HIV infection. Nat Med, 8(1), 47–53.PubMedCrossRefGoogle Scholar
  80. 80.
    Laport, G.G., Levine, B.L., Stadtmauer, E.A., Schuster, S.J., Luger, S.M., Grupp, S., Bunin, N., Strobl, F.J., Cotte, J., Zheng, Z. et al. (2003) Adoptive transfer of costimulated T cells induces lymphocytosis in patients with relapsed/refractory non-Hodgkin lymphoma following CD34+-selected hematopoietic cell transplantation. Blood, 102(6), 2004–2013.PubMedCrossRefGoogle Scholar
  81. 81.
    Rapoport, A.P., Levine, B.L., Badros, A., Meisenberg, B., Ruehle, K., Nandi, A., Rollins, S., Natt, S., Ratterree, B., Westphal, S. et al. (2004) Molecular remission of CML after autotransplantation followed by adoptive transfer of costimulated autologous T cells. Bone Marrow Transplant, 33(1), 53–60.PubMedCrossRefGoogle Scholar
  82. 82.
    Paulos, C.M., Suhoski, M.M., Plesa, G., Jiang, T., Basu, S., Golovina, T.N., Jiang, S., Aqui, N.A., Powell, D.J., Jr., Levine, B.L. et al. (2008) Adoptive immunotherapy: good habits instilled at youth have long-term benefits. Immunol Res, 42(1–3), 182–196.PubMedCrossRefGoogle Scholar
  83. 83.
    Mitsuyasu, R.T., Anton, P.A., Deeks, S.G., Scadden, D.T., Connick, E., Downs, M.T., Bakker, A., Roberts, M.R., June, C.H., Jalali, S. et al. (2000) Prolonged survival and tissue trafficking following adoptive transfer of CD4zeta gene-modified autologous CD4(+) and CD8(+) T cells in human immunodeficiency virus-infected subjects. Blood, 96(3), 785–793.PubMedGoogle Scholar
  84. 84.
    Thompson, J.A., Figlin, R.A., Sifri-Steele, C., Berenson, R.J., and Frohlich, M.W. (2003) A phase I trial of CD3/CD28-activated T cells (Xcellerated T cells) and interleukin-2 in patients with metastatic renal cell carcinoma. Clin Cancer Res, 9(10 Pt 1), 3562–3570.PubMedGoogle Scholar
  85. 85.
    Rapoport, A.P., Stadtmauer, E.A., Aqui, N., Badros, A., Cotte, J., Chrisley, L., Veloso, E., Zheng, Z., Westphal, S., Mair, R. et al. (2005) Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer. Nat Med, 11(11), 1230–1237.PubMedCrossRefGoogle Scholar
  86. 86.
    Pule, M.A., Savoldo, B., Myers, G.D., Rossig, C., Russell, H.V., Dotti, G., Huls, M.H., Liu, E., Gee, A.P., Mei, Z. et al. (2008) Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med, 14, 1264–1270.PubMedCrossRefGoogle Scholar
  87. 87.
    Rosenberg, S.A., Yang, J.C., Robbins, P.F., Wunderlich, J.R., Hwu, P., Sherry, R.M., Schwartzentruber, D.J., Topalian, S.L., Restifo, N.P., Filie, A. et al. (2003) Cell transfer therapy for cancer: lessons from sequential treatments of a patient with metastatic melanoma. J Immunother (1997), 26(5), 385–393.CrossRefGoogle Scholar
  88. 88.
    de Goer de Herve, M.-G., Cariou, A., Simonetta, F., and Taoufik, Y. (2008) Heterospecific CD4 help to rescue CD8 T cell killers. J Immunol, 181, 5974–5980.PubMedGoogle Scholar
  89. 89.
    Rasmussen, A.M. et al. Ex vivo expansion protocol for human tumor specific T cells for adoptive T cell therapy. (submitted).Google Scholar
  90. 90.
    Butterfield, L.H., Ribas, A., Dissette, V.B., Amarnani, S.N., Vu, H.T., Oseguera, D., Wang, H.J., Elashoff, R.M., McBride, W.H., Mukherji, B. et al. (2003) Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma. Clin Cancer Res, 9(3), 998–1008.PubMedGoogle Scholar
  91. 91.
    Wada, J., Yamasaki, A., Nagai, S., Yanai, K., Fuchino, K., Kameda, C., Tanaka, H., Koga, K., Nakashima, H., Nakamura, M. et al. (2008) Regulatory T-cells are possible effect prediction markers of immunotherapy for cancer patients. Anticancer Res, 28(4C), 2401–2408.PubMedGoogle Scholar
  92. 92.
    Curiel, T.J. (2008) Regulatory T cells and treatment of cancer. Curr Opin Immunol, 20(2), 241–246.PubMedCrossRefGoogle Scholar
  93. 93.
    Griffiths, R.W., Elkord, E., Gilham, D.E., Ramani, V., Clarke, N., Stern, P.L., and Hawkins, R.E. (2007) Frequency of regulatory T cells in renal cell carcinoma patients and investigation of correlation with survival. Cancer Immunol Immunother, 56(11), 1743–1753.PubMedCrossRefGoogle Scholar
  94. 94.
    Wolf, A.M., Wolf, D., Steurer, M., Gastl, G., Gunsilius, E., and Grubeck-Loebenstein, B. (2003) Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res, 9(2), 606–612.PubMedGoogle Scholar
  95. 95.
    Dudley, M.E., Wunderlich, J.R., Yang, J.C., Hwu, P., Schwartzentruber, D.J., Topalian, S.L., Sherry, R.M., Marincola, F.M., Leitman, S.F., Seipp, C.A. et al. (2002) A phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma. J Immunother (1997), 25(3), 243–251.CrossRefGoogle Scholar
  96. 96.
    Dannull, J., Su, Z., Rizzieri, D., Yang, B.K., Coleman, D., Yancey, D., Zhang, A., Dahm, P., Chao, N., Gilboa, E. et al. (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest, 115(12), 3623–3633.PubMedCrossRefGoogle Scholar
  97. 97.
    Thistlethwaite, F.C., Elkord, E., Griffiths, R.W., Burt, D.J., Shablak, A.M., Campbell, J.D., Gilham, D.E., Austin, E.B., Stern, P.L., and Hawkins, R.E. (2008) Adoptive transfer of T(reg) depleted autologous T cells in advanced renal cell carcinoma. Cancer Immunol Immunother, 57(5), 623–634.PubMedCrossRefGoogle Scholar
  98. 98.
    Mahnke, K., Schonfeld, K., Fondel, S., Ring, S., Karakhanova, S., Wiedemeyer, K., Bedke, T., Johnson, T.S., Storn, V., Schallenberg, S. et al. (2007) Depletion of CD4+CD25+ human regulatory T cells in vivo: kinetics of Treg depletion and alterations in immune functions in vivo and in vitro. Int J Cancer, 120(12), 2723–2733.PubMedCrossRefGoogle Scholar
  99. 99.
    Cheadle, E.J., Hawkins, R.E., Batha, H., Rothwell, D.G., Ashton, G., and Gilham, D.E. (2009) Eradication of established B-cell lymphoma by CD19-specific murine T cells is dependent on host lymphopenic environment and can be mediated by CD4+ and CD8+ T cells. J Immunother, 32(3), 207–218.PubMedCrossRefGoogle Scholar
  100. 100.
    Neurauter, A.A., Bonyhadi, M., Lien, E., Nokleby, L., Ruud, E., Camacho, S., and Aarvak, T. (2008) Cell isolation and expansion using dynabeads (r). Adv Biochem Eng Biotechnol, 106, 41–73.Google Scholar
  101. 101.
    Hollyman, D., Stefanski, J., Przybylowski, M., Bartido, S., Borquez-Ojeda, O., Taylor, C., Yeh, R., Capacio, V., Olszewska, M., Hosey, J. et al. (2009) Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J Immunother, 32(2), 169–180.PubMedCrossRefGoogle Scholar
  102. 102.
    Saeboe-Larssen, S., Fossberg, E., and Gaudernack, G. (2002) mRNA-based electrotransfection of human dendritic cells and induction of cytotoxic T lymphocyte responses against the telomerase catalytic subunit (hTERT). J Immunol Methods, 259(1–2), 191–203.PubMedCrossRefGoogle Scholar
  103. 103.
    Betts, M.R., Brenchley, J.M., Price, D.A., De Rosa, S.C., Douek, D.C., Roederer, M., and Koup, R.A. (2003) Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods, 281(1–2), 65–78.PubMedCrossRefGoogle Scholar
  104. 104.
    Mittendorf, E.A., Storrer, C.E., Shriver, C.D., Ponniah, S., and Peoples, G.E. (2005) Evaluation of the CD107 cytotoxicity assay for the detection of cytolytic CD8+ cells recognizing HER2/neu vaccine peptides. Breast Cancer Res Treat, 92(1), 85–93.PubMedCrossRefGoogle Scholar
  105. 105.
    Disis, M.L., Dela, R.C., Goodell, V., Kuan, L.Y., Chang, J.C., Kuus-Reichel, K., Clay, T.M., Kim, L.H., Bhatia, S., Ghanekar, S.A. et al. (2006) Maximizing the retention of antigen specific lymphocyte function after cryopreservation. J Immunol Methods, 308(1–2), 13–18.PubMedCrossRefGoogle Scholar
  106. 106.
    Smits, E., Ponsaerts, P., Lenjou, M., Nijs, G., Van Bockstaele, D.R., Berneman, Z.N., and Van, T.V. (2004) RNA-based gene transfer for adult stem cells and T cells. Leukemia, 18(11), 1898–1902.PubMedCrossRefGoogle Scholar
  107. 107.
    Schaft, N., Dorrie, J., Muller, I., Beck, V., Baumann, S., Schunder, T., Kampgen, E., and Schuler, G. (2006) A new way to generate cytolytic tumor-specific T cells: electroporation of RNA coding for a T cell receptor into T lymphocytes. Cancer Immunol Immunother, 55(9), 1132–1141.PubMedCrossRefGoogle Scholar
  108. 108.
    Holtkamp, S., Kreiter, S., Selmi, A., Simon, P., Koslowski, M., Huber, C., Tureci, O., and Sahin, U. (2006) Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood, 108, 4009–4017.PubMedCrossRefGoogle Scholar
  109. 109.
    Pasquinelli, A.E., Dahlberg, J.E., and Lund, E. (1995) Reverse 5' caps in RNAs made in vitro by phage RNA polymerases. RNA, 1(9), 957–967.PubMedGoogle Scholar
  110. 110.
    Stepinski, J., Waddell, C., Stolarski, R., Darzynkiewicz, E., and Rhoads, R.E. (2001) Synthesis and properties of mRNAs containing the novel "anti-reverse" cap analogs 7-methyl(3'-O-methyl)GpppG and 7-methyl (3'-deoxy)GpppG. RNA, 7(10), 1486–1495.PubMedGoogle Scholar
  111. 111.
    Tan, X. and Wan, Y. (2008) Enhanced protein expression by internal ribosomal entry site-driven mRNA translation as a novel approach for in vitro loading of dendritic cells with antigens. Hum Immunol, 69(1), 32–40.PubMedCrossRefGoogle Scholar
  112. 112.
    Liu, Y. and Bergan, R. (2001) Improved intracellular delivery of oligonucleotides by square wave electroporation. Antisense Nucleic Acid Drug Dev, 11, 7–14.PubMedCrossRefGoogle Scholar
  113. 113.
    Almåsbak, H. et al. Transiently redirected T cells for adoptive transfer: coelectroporation of chimeric antigen and chemokine receptor mRNAs. (in preparation).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hilde Almåsbak
    • 1
  • Marianne Lundby
    • 2
  • Anne-Marie Rasmussen
    • 1
  1. 1.Department of ImmunologyRadiumhospitalet-Rikshospitalet, University HospitalOsloNorway
  2. 2.Department of Cellular TherapyRadiumhospitalet-Rikshospitalet, University HospitalOsloNorway

Personalised recommendations