Advertisement

Functional Studies on RNA-Transfected Cell Microarrays

  • Christina Sæten Fjeldbo
  • Kristine Misund
  • Clara-Cecilie Günther
  • Mette Langaas
  • Tonje Strømmen Steigedal
  • Liv Thommesen
  • Astrid Lægreid
  • Torunn Bruland
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 629)

Abstract

RNA-transfected cell microarray shows great promise in functional genomics. By printing siRNA complexed with transfection reagent on glass slides, arrays of transfected cells are formed in which the phenotypic consequences of gene suppression can be investigated. Using reporter plasmids with fluorescence intensity as output data, we have developed a strategy for statistical analysis of the intensity data from medium-scale functional studies using data from several experimental replicates.

Key words

Reverse transfection RNA interference small interfering RNA (siRNA) linear regression (ANOVA) modeling 

Notes

Acknowledgments

We thank Hallgeir Bergum and Atle van Beelen Granlund at the National Technology Microarray Platform (Norwegian Microarray Consortium) at NTNU, which is founded by the Functional Genomics Programme (FUGE) of the Norwegian Research Counsil for valuable input and help in the work of establishing transfected cell microarrays in our lab. Funding was provided by Liaison Committee between the Central Norwegian Region Health Authority (RHA) and NTNU.

References

  1. 1.
    Ziauddin, J. and Sabatini, D.M. (2001) Microarrays of cells expressing defined cDNAs. Nature, 411, 107–110.PubMedCrossRefGoogle Scholar
  2. 2.
    Starkuviene, V., Pepperkok, R., and Erfle, H. (2007) Transfected cell microarrays: an efficient tool for high-throughput functional analysis. Expert Rev Proteomics, 4, 479–489.PubMedCrossRefGoogle Scholar
  3. 3.
    Kumar, R., Conklin, D.S., and Mittal, V. (2003) High-throughput selection of effective RNAi probes for gene silencing. Genome Res, 13, 2333–2340.PubMedCrossRefGoogle Scholar
  4. 4.
    Mousses, S., Caplen, N.J., Cornelison, R., Weaver, D., Basik, M., Hautaniemi, S., Elkahloun, A.G., Lotufo, R.A., Choudary, A., Dougherty, E.R. et al. (2003) RNAi microarray analysis in cultured mammalian cells. Genome Res, 13, 2341–2347.PubMedCrossRefGoogle Scholar
  5. 5.
    Silva, J.M., Mizuno, H., Brady, A., Lucito, R., and Hannon, G.J. (2004) RNA interference microarrays: high-throughput loss-of-function genetics in mammalian cells. Proc Natl Acad Sci U S A, 101, 6548–6552.PubMedCrossRefGoogle Scholar
  6. 6.
    Wheeler, D.B., Carpenter, A.E., and Sabatini, D.M. (2005) Cell microarrays and RNA interference chip away at gene function. Nat Genet, 37 Suppl, S25–S30.PubMedCrossRefGoogle Scholar
  7. 7.
    Fjeldbo, C.S., Misund, K., Gunther, C.C., Langaas, M., Steigedal, T.S., Thommesen, L., Laegreid, A., and Bruland, T. (2008) Functional studies on transfected cell microarray analysed by linear regression modelling. Nucleic Acids Res, 36, e97.PubMedCrossRefGoogle Scholar
  8. 8.
    Boutros, M., Bras, L.P., and Huber, W. (2006) Analysis of cell-based RNAi screens. Genome Biol, 7, R66.PubMedCrossRefGoogle Scholar
  9. 9.
    Misund, K., Steigedal, T.S., Laegreid, A., and Thommesen, L. (2007) Inducible cAMP early repressor splice variants ICER I and IIgamma both repress transcription of c-fos and chromogranin A. J Cell Biochem, 101, 1532–1544.PubMedCrossRefGoogle Scholar
  10. 10.
    Neumann, B., Held, M., Liebel, U., Erfle, H., Rogers, P., Pepperkok, R., and Ellenberg, J. (2006) High-throughput RNAi screening by time-lapse imaging of live human cells. Nat Methods, 3, 385–390.PubMedCrossRefGoogle Scholar
  11. 11.
    Conrad, C., Erfle, H., Warnat, P., Daigle, N., Lorch, T., Ellenberg, J., Pepperkok, R., and Eils, R. (2004) Automatic identification of subcellular phenotypes on human cell arrays. Genome Res, 14, 1130–1136.PubMedCrossRefGoogle Scholar
  12. 12.
    Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H., Friman, O., Guertin, D.A., Chang, J.H., Lindquist, R.A., Moffat, J. et al. (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol, 7, R100.PubMedCrossRefGoogle Scholar
  13. 13.
    Pepperkok, R. and Ellenberg, J. (2006) High-throughput fluorescence microscopy for systems biology. Nat Rev Mol Cell Biol, 7, 690–696.PubMedCrossRefGoogle Scholar
  14. 14.
    Baghdoyan, S., Roupioz, Y., Pitaval, A., Castel, D., Khomyakova, E., Papine, A., Soussaline, F., and Gidrol, X. (2004) Quantitative analysis of highly parallel transfection in cell microarrays. Nucleic Acids Res, 32, e77.PubMedCrossRefGoogle Scholar
  15. 15.
    Mannherz, O., Mertens, D., Hahn, M., and Lichter, P. (2006) Functional screening for proapoptotic genes by reverse transfection cell array technology. Genomics, 87, 665–672.PubMedCrossRefGoogle Scholar
  16. 16.
    Hu, Y.H., Warnatz, H.J., Vanhecke, D., Wagner, F., Fiebitz, A., Thamm, S., Kahlem, P., Lehrach, H., Yaspo, M.L., and Janitz, M. (2006) Cell array-based intracellular localization screening reveals novel functional features of human chromosome 21 proteins. BMC Genomics, 7, 155.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Christina Sæten Fjeldbo
    • 1
  • Kristine Misund
    • 1
  • Clara-Cecilie Günther
    • 2
  • Mette Langaas
    • 2
  • Tonje Strømmen Steigedal
    • 1
  • Liv Thommesen
    • 1
  • Astrid Lægreid
    • 1
  • Torunn Bruland
    • 1
  1. 1.Department of Cancer Research and Molecular MedicineNorwegian University of Science and Technology (NTNU)TrondheimNorway
  2. 2.Department of Mathematical SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway

Personalised recommendations