Hot Start PCR

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 630)

Abstract

Hot Start activation approaches are increasingly being used to improve the performance of PCR. Since the inception of Hot Start as a means of blocking DNA polymerase extension at lower temperatures, a number of approaches have been developed that target the essential reaction components such as magnesium ion, DNA polymerase, oligonucleotide primers, and dNTPs. Herein, five different Hot Start activation protocols are presented. The first method presents the use of barriers as a means of segregating key reaction components until a Hot Start activation step. The second and third protocols demonstrate Hot Start approaches to block DNA polymerase activity through the use of anti-DNA polymerase antibodies and accessory proteins, respectively. The fourth and fifth protocols utilize thermolabile chemical modifications to the oligonucleotide primers and dNTPs. The results presented demonstrate that all protocols significantly improve the specificity of traditional thermal cycling protocols.

Key words

PCR Hot Start PCR Primer dimer Mispriming Thermal cycler DNA polymerase dNTPs 

References

  1. 1.
    Mullis KB (July 28, 1987) Process for amplifying nucleic acid sequences. US4683202Google Scholar
  2. 2.
    Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487-91PubMedCrossRefGoogle Scholar
  3. 3.
    Budowle B, Schutzer SE, Einseln A, Kelley LC, Walsh AC, Smith JA, Marrone BL, Robertson J, Campos J (2003) Public health. Building micro­bial forensics as a response to bioterrorism. Science 301:1852-3PubMedCrossRefGoogle Scholar
  4. 4.
    Dahiya R, Deng G, Selph C, Carroll P, Presti J Jr (1998) A novel p53 mutation hotspot at codon 132 (AAG->AGG) in human renal cancer. Biochem Mol Biol Int 44:407-15PubMedGoogle Scholar
  5. 5.
    Elnifro EM, Ashshi AM, Cooper RJ, Klapper PE (2000) Multiplex PCR: optimization and application in diagnostic virology. Clin Microbiol Rev 13:559-70PubMedCrossRefGoogle Scholar
  6. 6.
    Kolmodin LA, Williams JF (1997) PCR. Basic principles and routine practice. Met Mol Biol 67:3-15Google Scholar
  7. 7.
    Saldanha J, Minor P (1994) A sensitive PCR method for detecting HCV RNA in plasma pools, blood products, and single donations. J Med Virol 43:72-6PubMedCrossRefGoogle Scholar
  8. 8.
    Sato Y, Hayakawa M, Nakajima T, Motani H, Kiuchi M (2003) HLA typing of aortic tissues from unidentified bodies using hot start polymerase chain reaction-sequence specific primers. Leg Med (Tokyo) 5(Suppl 1):S191-3CrossRefGoogle Scholar
  9. 9.
    Chou Q, Russell M, Birch DE, Raymond J, Bloch W (1992) Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplifications. Nucl Acids Res 20:1717-23PubMedCrossRefGoogle Scholar
  10. 10.
    D’Aquila RT, Bechtel LJ, Videler JA, Eron JJ, Gorczyca P, Kaplan JC (1991) Maximizing sensi­tivity and specificity of PCR by pre-amplification heating. Nucl Acids Res 19:3749PubMedCrossRefGoogle Scholar
  11. 11.
    Newton CR, Graham A, Heptinstall LE, Powell SJ, Summers C, Kalsheker N, Smith JC, Markham AF (1989) Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucl Acids Res 17:2503-16PubMedCrossRefGoogle Scholar
  12. 12.
    Tanzer LR, Hu Y, Cripe L, Moore RE (1999) A hot-start reverse transcription-polymerase chain reaction protocol that initiates multiple analyses simultaneously. Anal Biochem 273:307-10PubMedCrossRefGoogle Scholar
  13. 13.
    Setterquist RA, Smith KG (January 4, 1996) Encapsulated PCR reagents. WO9600301 (A1)Google Scholar
  14. 14.
    Barnes WM, Rowlyk KR (2002) Magnesium precipitate hot start method for PCR. Mol Cell Probes 16:167-71PubMedCrossRefGoogle Scholar
  15. 15.
    Barnes WM, Rowlyk KR (February 13, 2003) Magnesium precipitate hot start method for molecular manipulation of nucleic acids. WO03012066Google Scholar
  16. 16.
    Andersen MR (February 5, 2004) Mg-mediated hot start biochemical reactions. WO2004011666 (A2)Google Scholar
  17. 17.
    Cottingham HV (September 9, 1999) Device and method for DNA amplification and assay. US5948673 (A)Google Scholar
  18. 18.
    Eastlund E, Mueller E (2001) Hot Start RT-PCR results in improved performance of the enhanced avian RT-PCR system. LifeSci Quarterly 2:2-5Google Scholar
  19. 19.
    Mizuguchi H, Nakatsuji M, Fujiwara S, Takagi M, Imanaka T (1999) Characterization and application to hot start PCR of neutralizing monoclonal antibodies against KOD DNA polymerase. J Biochem (Tokyo) 126:762-8CrossRefGoogle Scholar
  20. 20.
    Dang C, Jayasena SD (1996) Oligonucleotide inhibitors of Taq DNA polymerase facilitate detection of low copy number targets by PCR. J Mol Biol 264:268-78PubMedCrossRefGoogle Scholar
  21. 21.
    Birch DE, Laird WJ, Zoccoli A (June 30, 1998) Nucleic acid amplification using a reversibly inactivated thermostable enzyme. US5773258Google Scholar
  22. 22.
    Moretti T, Koons B, Budowle B (1998) Enhancement of PCR amplification yield and specificity using AmpliTaq Gold DNA polymerase. Biotechniques 25:716-22PubMedGoogle Scholar
  23. 23.
    Pavlov AR, Belova GI, Kozyavkin SA, Slesarev AI (2002) Helix-hairpin-helix motifs confer salt resistance and processivity on chimeric DNA polymerases. Proc Natl Acad Sci USA 99:13510-5PubMedCrossRefGoogle Scholar
  24. 24.
    Kermekchiev MB, Tzekov A, Barnes WM (2003) Cold-sensitive mutants of Taq DNA polymerase provide a hot start for PCR. Nucl Acids Res 31:6139-47PubMedCrossRefGoogle Scholar
  25. 25.
    Borns M (January 11, 2007) Hot start polymerase reaction using a thermolabile blocker. US2007009922 (A1)Google Scholar
  26. 26.
    Clark DR, Vincent SP (March 16, 2006) Amplification process. US2006057617Google Scholar
  27. 27.
    Kubu CJ, Muller-Greven JC, Moffett RB (June 12, 2008) Novel hot start nucleic acid amplification. US2008138878 (A1)Google Scholar
  28. 28.
    Ailenberg M, Silverman M (2000) Controlled hot start and improved specificity in carrying out PCR utilizing touch-up and loop incorporated primers (TULIPS). Biotechniques 29(1018-20):22-4Google Scholar
  29. 29.
    Kaboev OK, Luchkina LA, Tret’iakov AN, Bahrmand AR (2000) PCR hot start using primers with the structure of molecular beacons (hairpin-like structure). Nucl Acids Res 28:E94PubMedCrossRefGoogle Scholar
  30. 30.
    Puskas LG, Bottka S (1995) Reduction of mispriming in amplification reactions with restricted PCR. Genome Res 5:309-11PubMedCrossRefGoogle Scholar
  31. 31.
    Vestheim H, Jarman SN (2008) Blocking primers to enhance PCR amplification of rare sequences in mixed samples - a case study on prey DNA in Antarctic krill stomachs. Front Zool 5:12PubMedCrossRefGoogle Scholar
  32. 32.
    Wangh LJ, Rice J, Sanchez JA, Pierce K, Salk J, Reis A, Hartshorn, C (August 10, 2006) Reagents and methods for improving reproducibility and reducing mispriming in PCR amplification. US2006177842 (A1)Google Scholar
  33. 33.
    Laird WJ, Niemiec JT (September 21, 2004) Amplification using modified primers. US6794142 (B2)Google Scholar
  34. 34.
    Will SG (December 14, 1999) Modified nucleic acid amplification primers. US6001611Google Scholar
  35. 35.
    Ankenbauer W, Heindl D, Laue F, Huber N (June 6, 2003) Composition and method for hot start nucleic acid amplification. US2003119150Google Scholar
  36. 36.
    Ullman EF, Lishanski A, Kurn N (November 19, 2002) Method for polynucleotide amplification. US6482590Google Scholar
  37. 37.
    Young DD, Edwards WF, Lusic H, Lively MO, Deiters A (2008) Light-triggered polyme­rase chain reaction. Chem Commun (Camb) 28:462-4CrossRefGoogle Scholar
  38. 38.
    Bonner AG (August 28, 2003) Reversible chemical modification of nucleic acids and improved method for nucleic acid hybridi­zation. US2003162199 (A1)Google Scholar
  39. 39.
    Lebedev AV, Paul N, Yee J, Timoshchuk VA, Shum J, Miyagi K, Kellum J, Hogrefe RI, Zon G (2008) Hot start PCR with heat-activatable primers: a novel approach for improved PCR performance. Nucl Acids Res 36:e131PubMedCrossRefGoogle Scholar
  40. 40.
    Koukhareva I, Haoqiang H, Yee J, Shum J, Paul N, Hogrefe RI, Lebedev AV (2008) Heat activatable 3′-modified dNTPs: synthesis and application for hot start PCR. Nucl Acids Symp Ser (Oxf); 259-60.Google Scholar
  41. 41.
    Fan XY, Lu GZ, Wu LN, Chen JH, Xu WQ, Zhao CN, Guo SQ (2006) A modified single-tube one-step product-enhanced reverse transcriptase (mSTOS-PERT) assay with heparin as DNA polymerase inhibitor for specific detection of RTase activity. J Clin Virol 37:305-12PubMedCrossRefGoogle Scholar
  42. 42.
    Sears JF, Khan AS (2003) Single-tube fluorescent product-enhanced reverse transcriptase assay with Ampliwax (STF-PERT) for retrovirus quantitation. J Virol Met 108:139-42CrossRefGoogle Scholar
  43. 43.
    Ignatov K, Kramarov V (November 11, 2007) Method for performing the hot start of enzymatic reactions. US2007254327 (A1)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Research and DevelopmentTriLink BioTechnologies, Inc.San DiegoUSA

Personalised recommendations