Applications of Gold Nanorods for Cancer Imaging and Photothermal Therapy

  • Xiaohua Huang
  • Ivan H. El-Sayed
  • Mostafa A. El-Sayed
Part of the Methods in Molecular Biology book series (MIMB, volume 624)


This chapter describes the application of gold nanorods in biomedical imaging and photothermal therapy. The photothermal properties of gold nanorods are summarized and the synthesis as well as antibody conjugation of gold nanorods is outlined. Biomedical applications of gold nanorods include cancer imaging using their enhanced scattering property and photothermal therapy using their enhanced nonradiative photothermal property.

Key words

Gold nanorods cancer imaging photothermal therapy 



We like to thank the support of the Chemical Science, Geosciences, and Bioscience Division of the Department of Energy (Grant DE-FG02-97ER14799) and the National Cancer Institute Center of Cancer Nanotechnology Excellence Award (U54CA119338).


  1. 1.
    Mie, G. (1908) Contribution to the optics of turbid media, especially colloidal metal suspensions. Ann Phys 25, 377–445.CrossRefGoogle Scholar
  2. 2.
    Gans, R. (1915) Form of ultramicroscopic particles of silver. Ann Phys 47, 270–284.CrossRefGoogle Scholar
  3. 3.
    Papavassiliou, G. C. (1979) Optical properties of small inorganic and organic metal particles. Prog Solid State Chem 12, 185–271.CrossRefGoogle Scholar
  4. 4.
    Link, S., Mohamed, M. B., and El-Sayed, M. A. (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103, 8410–8426.CrossRefGoogle Scholar
  5. 5.
    Link, S. and El-Sayed, M. A. (2005) Additions and corrections to simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 109, 10531–10532.CrossRefGoogle Scholar
  6. 6.
    Sönnichsen, C., Franzl, T., Wilk, T., Plessen, G. V., and Feldmann, J. (2002) Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett 88, 077402–077406.CrossRefPubMedGoogle Scholar
  7. 7.
    Zhu, J., Huang, L., Zhao, J., Wang, Y., Zhao, Y., Hao, L., and Lu, Y. (2005) Shape dependent resonance light scattering properties of gold nanorods. Mater Sci Eng B 121, 199–203.CrossRefGoogle Scholar
  8. 8.
    Link, S. and El-Sayed, M. A. (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19, 409–453.CrossRefGoogle Scholar
  9. 9.
    Jain, P. K., Lee, K. S., El-Sayed, I. H., and El-Sayed, M. A. (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110, 7238–7248.CrossRefPubMedGoogle Scholar
  10. 10.
    Du, H., Fuh, R. A., Li, J., Corkan, A., and Lindsey, J. S. (1998) PhotochemCAD††: a computer-aided design and research tool in photochemistry. Photochem Photobiol 68, 141–142.Google Scholar
  11. 11.
    Weissleder, R. (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19, 316–317.CrossRefPubMedGoogle Scholar
  12. 12.
    Lee, K. S. and El-Sayed, M. A. (2005) Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. J Phys Chem B 109, 20331–20338.CrossRefPubMedGoogle Scholar
  13. 13.
    Nikoobakht, B. and El-Sayed, M. A. (2003) Preparation and growth mechanism of gold nanorods using seed-mediated growth method. Chem Mater 15, 1957–1961.CrossRefGoogle Scholar
  14. 14.
    Murphy, C. J., Sau, T. K., Gole, A. M., Orendorff, C. J., Gao, J., Gou, L., Hunyadi, S. E., and Li, T. (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109, 13857–13870.CrossRefPubMedGoogle Scholar
  15. 15.
    P’erez-Juste, J., Pastoriza-Santos, I., Liz-Marz’an, L. M., and Mulvaney, P. (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249, 1870–1901.CrossRefGoogle Scholar
  16. 16.
    Orendorff, C. J. and Murphy, C. J. (2006) Quantitation of metal content in the silver-assisted growth of gold nanorods. J Phys Chem B 110, 3990–3994.CrossRefPubMedGoogle Scholar
  17. 17.
    Huang, X., El-Sayed, I. H., and El-Sayed, M. A. (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128, 2115–2120.CrossRefPubMedGoogle Scholar
  18. 18.
    El-Sayed, I. H., Huang, X., and El-Sayed, M. A. (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239, 129–135.CrossRefPubMedGoogle Scholar
  19. 19.
    Dickerson, E. B., Dreaden, E. C., Huang, X., El-Sayed, I. H., Chu, H., Pushpanketh, S., McDonald, J. F., and El-Sayed, M. A. (2008) Gold nanorods assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269, 57–66.CrossRefPubMedGoogle Scholar
  20. 20.
    Harris, J. M. and Chess, R. B. (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2, 214–221.CrossRefPubMedGoogle Scholar
  21. 21.
    Huff, T. B., Hansen, M. N., Zhao, Y., Cheng, J. X., and Wei, A. (2007) Controlling the cellular uptake of gold nanorods. Langmuir 23, 1596–1599.CrossRefPubMedGoogle Scholar
  22. 22.
    Liao, H. W. and Hafner, J. H. (2005) Gold nanorod bioconjugates. Chem Mater 17, 4636–4641.CrossRefGoogle Scholar
  23. 23.
    Niidome, T., Yamagata, M., Okamoto, Y., Akiyama, Y., Takahashi, H., Kawano, T., Katayama, Y., and Niidome, Y. (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114, 343–347.CrossRefPubMedGoogle Scholar
  24. 24.
    Maeda, H. (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41, 189–207.CrossRefPubMedGoogle Scholar
  25. 25.
    Jain, R. K. (1987) Transport of molecules in the tumor interstitium: a review. Cancer Res 47, 3039–3051.PubMedGoogle Scholar
  26. 26.
    Hirsch, L. R., Stafford, R. J., Bankson, J. A., Sershen, S. R., Rivera, B., Price, R. E., Hazle, J. D., Halas, N. J., and West, J. (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100, 13549–13554.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Xiaohua Huang
    • 1
  • Ivan H. El-Sayed
    • 2
  • Mostafa A. El-Sayed
    • 1
  1. 1.Laser Dynamics LaboratorySchool of Chemistry and Biochemistry, Georgia Institute of TechnologyAtlantaUSA
  2. 2.Department of Otolaryngology-Head and Neck Surgery, Comprehensive Cancer CenterUniversity of California at San FranciscoSan FranciscoUSA

Personalised recommendations