Targeting of Nanoparticles: Folate Receptor

  • Sumith A. Kularatne
  • Philip S. Low
Part of the Methods in Molecular Biology book series (MIMB, volume 624)


Nanoparticulate medicines offer the advantage of allowing delivery of large quantities of unmodified drug within the same particle. Nanoparticle uptake by cancer cells can, however, be compromised due to the large size and hydrophilicity of the particle. To circumvent cell penetration problems and simultaneously improve tumor specificity, nanoparticulate medicines have been linked to targeting ligands that bind to malignant cell surfaces and enter cells by receptor-mediated endocytosis. In this chapter, we summarize multiple methods for delivering nanoparticles into cancer cells by folate receptor-mediated endocytosis, devoting special emphasis to folate-targeted liposomes. Folate receptor-mediated endocytosis has emerged as an attractive strategy for nanoparticle delivery due to both overexpression of the folate receptor on cancer cells and the rapid internalization of the receptor by receptor-mediated endocytosis.

Key words

Folate receptor-targeted drugs cancer nanomedicines ligand-targeted nanoparticles folate-targeted imaging agents folic acid coupling chemistries pteroic acid synthesis conjugation of amine, hydroxyl, thiol, or carboxyl functionalized nanoparticles to folate 


  1. 1.
    Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, J., and Thus, M. J. (2008) Cancer statistics, 2008. CA Cancer J Clin 58, 71–96.CrossRefPubMedGoogle Scholar
  2. 2.
    Menon, U. and Jacobs, I. J. (2000) Recent development in ovarian cancer screening. Curr Opin Obstet Gynecol 12, 39–42.CrossRefPubMedGoogle Scholar
  3. 3.
    Li, C. (2002) Poly(L-glutamic acid)-anticancer drug conjugates. Adv Drug Deliv Rev 54, 695–713.CrossRefPubMedGoogle Scholar
  4. 4.
    Gabizon, A. (1995) Liposome circulation time and tumor targeting: implications for cancer chemotherapy. Adv Drug Deliv Rev 16, 285–294.CrossRefGoogle Scholar
  5. 5.
    Nie, S., Xing, Y., Kim, G. J., and Simons, J. W. (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9, 12.1–12.32.CrossRefGoogle Scholar
  6. 6.
    Ringsdorf, H. (1975) Structure and properties of pharmacologically active polymers. J Polm Sci Polym Symp 51, 135–153.CrossRefGoogle Scholar
  7. 7.
    Moghimi, S. M. and Hunter, A. C. (2000) Poloxamers and poloxamines in nanoparticles engineering and experimental medicine. Trends Biotechnol 18, 412–420.CrossRefPubMedGoogle Scholar
  8. 8.
    Park, E. K., Lee, S. B., and Lee, Y. M. (2005) Preparation and characterization of methoxypoly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials 26, 1053–1061.CrossRefPubMedGoogle Scholar
  9. 9.
    Lichtenberg, D. (1988) Liposomes: preparation, characterization, and preservation. Methods Biochem Anal 33, 337–468.CrossRefPubMedGoogle Scholar
  10. 10.
    Litzinger, D. C. and Huang, L. (1992) Phosphatidylethanol amine liposomes: drug delivery, gene transfer, and immunodiagnostic applications. Biochim Biophys Acta 1113, 201–227.PubMedGoogle Scholar
  11. 11.
    Matsumura, Y. and Maeda, H. (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res 46, 6387–6392.PubMedGoogle Scholar
  12. 12.
    Meada, H. (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular targeting. Adv Enzyme Regul 41, 189–207.CrossRefGoogle Scholar
  13. 13.
    Allen, T. M. (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2, 750–763.CrossRefPubMedGoogle Scholar
  14. 14.
    Low, P. S. and Antony, A. C. (2004) Folate receptor-targeted drugs for cancer and inflammatory disease. Adv Drug Deliv Rev 56, 1055–1231.CrossRefPubMedGoogle Scholar
  15. 15.
    Ross, J. F., Chaudhuri, P. K., and Ratnam, M. (1994) Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer 73, 2432–2443.CrossRefPubMedGoogle Scholar
  16. 16.
    Weitman, S. D., Lark, R. H., Coney, L. R., Fort, D. W., Frasca, V., Zurawski, V. R., and Kamen, B. A. (1992) Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 52, 3396–3401.PubMedGoogle Scholar
  17. 17.
    Reddy, J. A., Allagadda, V. M., and Leamon, C. P. (2005) Targeting therapeutic and imaging agents to folate receptor positive tumors. Curr Pharm Biotech 6, 131–150.CrossRefGoogle Scholar
  18. 18.
    Kamen, B. A. and Capdevila, A. (1986) Receptor-mediated folate accumulation is regulated by the cellular folate content. Proc Natl Acad Sci USA 83, 5983–5987.CrossRefPubMedGoogle Scholar
  19. 19.
    Henne, W. A., Doorneweerd, D. D., Hilgenbrink, A. R., Kularatne, S. A., and Low, P. S. (2006) Synthesis and activity of a folate peptide camptothecin prodrug. Bioorg Med Chem Lett 16, 5350–5355.CrossRefPubMedGoogle Scholar
  20. 20.
    Reddy, J. A. and Low, P. S. (2000) Enhanced folate receptor-mediated gene therapy using a novel pH-sensitive lipid formulation. J Control Release 64, 27–37.CrossRefPubMedGoogle Scholar
  21. 21.
    Lu, Y. and Low, P. S. (2002) Folate targeting of haptens to cancer cell surfaces mediates immunotherapy of syngeneic murine tumors. Cancer Immunol Immunother 51, 153–162.CrossRefPubMedGoogle Scholar
  22. 22.
    Leamon, C. P. and Low, P. S. (1992) Cytotoxicity of momordin-folate conjugates in cultured human cells. J Biol Chem 267, 24966–24971.PubMedGoogle Scholar
  23. 23.
    Zhao, X., Li, H., and Lee, R. J. (2008) Target drug delivery via folate receptors. Expert Opin Drug Deliv 5, 309–319.CrossRefPubMedGoogle Scholar
  24. 24.
    Majoros, I. J., Thomas, T. P., Mehta, C. B., and Baker, J. R. (2005) Poly(amidoamine) dendrimer-base multifunctional engineered nanodevice for cancer therapy. J Med Chem 48, 5892–5899.CrossRefPubMedGoogle Scholar
  25. 25.
    Yoo, H. S. and Park, T. G. (2004) Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate. J Control Release 100, 247–256.CrossRefPubMedGoogle Scholar
  26. 26.
    Leamon, C. P., Parker, M. A., Vlahov, I. R., Xu, L. C., Reddy, J. A., Vetzel, M., and Douglas, N. (2002) Synthesis and biological evaluation of EC20: a new folate-derived, 99mTc-based radiopharmaceutical. Bioconjugate Chem 13, 1200–1210.CrossRefGoogle Scholar
  27. 27.
    Yoshizawa, T., Hattori, Y., Hakoshima, M., Koga, K., and Maitani, Y. (2008) Folate-linked lipid-base nanoparticles for synthetic siRNA delivery in KB tumor xenografts. Eur J Pharm Biopharm 70, 718–725.CrossRefPubMedGoogle Scholar
  28. 28.
    Lee, R. J., Wang, S., Turk, M. J., and Low, P. S. (1998) The effects of pH and intraliposomal buffer strength on the rate of liposome content release and intracellular drug delivery. Biosci Rep 18, 69–78.CrossRefPubMedGoogle Scholar
  29. 29.
    Yang, J., Chen, H., Vlahov, I. R., Cheng, J., and Low, P. S. (2007) Characterization of the pH of folate receptor-containing endosomes and the rate of hydrolysis of internalized acid-labile folate-drug conjugates. J Pharmacol Exp Ther 321, 462–468.CrossRefPubMedGoogle Scholar
  30. 30.
    Larsen, A. K., Escargueil, A. K., and Skladanowski, A. (2000) Resistance mechanisms associated with altered intracellular distribution of anticancer agents. Pharmacol Ther 85, 217–229.CrossRefPubMedGoogle Scholar
  31. 31.
    Xu, L., Vlahov, I. R., Leamon, C. P., Santhapuram, H., and Li, C. (2006) Synthesis and purification of pteroic acid and conjugates thereof. US Patent WO2006101845.Google Scholar
  32. 32.
    Zhang, Y., Guo, L., Roeske, R. W., Antony, A. C., and Jayaram, H. N. (2004) Pteroyl-γ-glutamate-cysteine synthesis and its application in folate receptor-mediated cancer cell targeting using folate-tethered liposomes. Anal Biochem 332, 168–177.CrossRefPubMedGoogle Scholar
  33. 33.
    Wu, J., Liu, Q., and Lee, R. J. (2006) A folate receptor-targeted liposomal formulation for paclitaxel. Int J Pharm 316, 148–153.CrossRefPubMedGoogle Scholar
  34. 34.
    Rouser, G., Fleischer, J., and Yamamoto, A. (1970) Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorous analysis of spots. Lipids 5, 494–496.CrossRefPubMedGoogle Scholar
  35. 35.
    Vlahov, I. R., Santhapuram, H. R., Kleindl, P. J., Howard, S. J., Stanford, K. M., and Leamon, C. P. (2006) Design and regioselective synthesis of a new generation of targeted chemotherapeutics. Part 1: EC 145, a folic acid conjugate of desacetylvinblastine monohydrazide. Bioorg Med Chem Lett 16, 5093–5096.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Sumith A. Kularatne
    • 1
  • Philip S. Low
    • 1
  1. 1.Department of Chemistry and Purdue Cancer CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations