Advertisement

Strategies for the Isolation and Characterization of Antibacterial Lantibiotics

  • Daniela Jabes
  • Stefano Donadio
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 618)

Abstract

Lantibiotics are biologically active peptides produced by several strains from the phyla Firmicutes and Actinobacteria. They are ribosomally synthesized and undergo posttranslational modifications that endow them with the characteristic (methyl)-lanthionine residues. As a result, lantibiotics contain a variable number of rings, each carrying one thioether link. Many lantibiotics inhibit growth of Gram-positive bacterial strains by interfering with peptidoglycan formation. Because they bind to the key intermediate lipid II at a site not affected by clinically used antibiotics, they are effective against multidrug-resistant strains. We describe a bioassay-based method suitable for finding antibacterial lantibiotics from actinomycete strains and provide selected procedures for characterizing newly discovered lantibiotics for their antibacterial properties.

Key words

Actinomycetes antibiotics bioactive peptides lantibiotics MRSA screening 

Notes

Acknowledgments

We are grateful to Wilfred van der Donk and Mike Dawson for sharing information ahead of publication.

References

  1. 1.
    Chatterjee, C., Paul, M., Xie, L., and van der Donk, W. A. (2005) Biosynthesis and mode of action of lantibiotics. Chem. Rev. 105, 633–684.PubMedCrossRefGoogle Scholar
  2. 2.
    Willey, J. M. and van der Donk, W. A. (2007) Lantibiotics: peptides of diverse structure and function. Annu. Rev. Microbiol. 61, 477–501.PubMedCrossRefGoogle Scholar
  3. 3.
    Märki, F., Hänni, E., Fredenhagen, A., and van Oostrum, J. (1991) Mode of action of the lanthionine-containing peptide antibiotics duramycin, duramycin B and C, and cinnamycin as indirect inhibitors of phospholipase A2. Biochem. Pharmacol. 42, 2027–2035.PubMedCrossRefGoogle Scholar
  4. 4.
    Cloutier, M. M., Guernsey, L., Mattes, P., and Koeppen, B. (1990) Duramycin enhances chloride secretion in airway epithelium. Am. J. Physiol. 259, C450–C454.PubMedGoogle Scholar
  5. 5.
    Molina y Vedia, L. M., Stutts, M. J., Boucher, J. R. C., and Henke, D. C. (1995) U.S. Patent No. 5,716,931.Google Scholar
  6. 6.
    Cox, C. R., Coburn, P. S., and Gilmore, M. S. (2005) Enterococcal cytolysin: a novel two component peptide system that serves as a bacterial defense against eukaryotic and prokaryotic cells. Curr. Protein Pept. Sci. 6, 77–84.PubMedCrossRefGoogle Scholar
  7. 7.
    Kodani, S., Hudson, M. E., Durrant, M. C., Buttner, M. J., Nodwell, J. R., and Willey, J. M. (2004) The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. Proc. Natl. Acad. Sci. USA 101, 11448–11453.PubMedCrossRefGoogle Scholar
  8. 8.
    Kodani, S., Lodato, M. A., Durrant, M. C., Picart, F., and Willey, J. M. (2005) SapT, a lanthionine-containing peptide involved in aerial hyphae formation in the streptomycetes. Mol. Microbiol. 58, 1368–1380.PubMedCrossRefGoogle Scholar
  9. 9.
    Tillotson, R. D., Wösten, H. A., Richter, M., and Willey, J. M. (1998) A surface active protein involved in aerial hyphae formation in the filamentous fungus Schizophyllum commune restores the capacity of a bald mutant of the filamentous bacterium Streptomyces coelicolor to erect aerial structures. Mol. Microbiol. 30, 595–602.PubMedCrossRefGoogle Scholar
  10. 10.
    Kellner, R., Jung, G., Josten, M., Kaletta, C., Entian, K. D., and Sahl, H. G. (1989) Pep5: structure elucidation of a large lantibiotic. Angew. Chem. 101, 618–621.CrossRefGoogle Scholar
  11. 11.
    Pag, U. and Sahl, H. G. (2002) Multiple activities in lantibiotics – models for the design of novel antibiotics? Curr. Pharm. Des. 8, 815–833.PubMedCrossRefGoogle Scholar
  12. 12.
    Castiglione, F., Lazzarini, A., Carrano, L., Corti, E., Ciciliato, I., Gastaldo, L., Candiani, P., Losi, D., Marinelli, F., Selva, E., and Parenti, F. (2008) Determining the structure and mode of action of microbisporicin, a potent lantibiotic active against multiresistant pathogens. Chem. Biol. 15, 22–31.PubMedCrossRefGoogle Scholar
  13. 13.
    Maffioli, S. I., Potenza, D., Vasile, F., De Matteo, M., Sosio, M., Marsiglia, B., Rizzo, V., Scolastico, C., and Donadio, S. (2009) Structure revision of the lantibiotic 97518. J. Nat. Prod. DOI: 10.1021/np800794y.Google Scholar
  14. 14.
    Li, B., Cooper, L. E., and van der Donk, W. A. (2009) In vitro studies of lantibiotic biosynthesis. Meth. Enzymol. 458, 533–558.PubMedCrossRefGoogle Scholar
  15. 15.
    Cortés, J., Appleyard, A. N., and Dawson, M. J. (2009) Whole-cell generation of lantibiotic variants. Meth. Enzymol. 458, 559–574.PubMedCrossRefGoogle Scholar
  16. 16.
    Somma, S., Merati, W., and Parenti, F. (1977) Gardimycin, a new antibiotic inhibiting peptidoglycan synthesis. Antimicrob. Agents Chemother. 11, 396–401.PubMedCrossRefGoogle Scholar
  17. 17.
    Dodd, H., Gasson, M., Mayer, M., and Narbad, A. (2006) Identifying lantibiotic gene clusters and novel lantibiotic genes. WO 2006/111743.Google Scholar
  18. 18.
    Donadio, S., Monciardini, P., and Sosio, M. (2009) Approaches to discovering novel antibacterial and antifungal agents. Meth. Enzymol. 458, 3–28.PubMedCrossRefGoogle Scholar
  19. 19.
    Meyer, H. E., Heber, M., Eisermann, B., Korte, H., Metzger, J. W., and Jung, G. (1994) Sequence analysis of lantibiotics: chemical derivatization procedures allow a fast access to complete Edman degradation. Anal. Biochem. 223, 185–190.PubMedCrossRefGoogle Scholar
  20. 20.
    Brumfitt, W., Salton, M. R., and Hamilton-Miller, J. M. (2002) Nisin, alone and combined with peptidoglycan-modulating antibiotics: activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. J. Antimicrob. Chemother. 50, 731–734.PubMedCrossRefGoogle Scholar
  21. 21.
    Goldstein, B. P., Wei, J., Greenberg, K., and Novick, R. (1998) Activity of nisin against Streptococcus pneumoniae, in vitro, and in a mouse infection model. J. Antimicrob. Chemother. 42, 277–278.PubMedCrossRefGoogle Scholar
  22. 22.
    Brötz, H., Bierbaum, G., Markus, A., Molitor, E., and Sahl, H. G. (1995) Mode of action of the lantibiotic mersacidin: inhibition of peptidoglycan biosynthesis via a novel mechanism? Antimicrob. Agents Chemother. 39, 714–719.PubMedCrossRefGoogle Scholar
  23. 23.
    Brötz, H., Bierbaum, G., Reynolds, P. E., and Sahl, H. G. (1997) The lantibiotic mersacidin inhibits peptidoglycan biosynthesis at the level of transglycosylation. Eur. J. Biochem. 246, 193–199.PubMedCrossRefGoogle Scholar
  24. 24.
    Brötz, H., Bierbaum, G., Leopold, K., Reynolds, P. E., and Sahl, H. G. (1998) The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob. Agents Chemother. 42, 154–160.PubMedGoogle Scholar
  25. 25.
    Bavin, E. M., Beach, A. S., Falconer, R., and Friedman, R. (1952) Nisin in experimental tuberculosis. Lancet 259, 127–129.CrossRefGoogle Scholar
  26. 26.
    NCCLS document M100-S16. (2006) Performance standards for antimicrobial susceptibility testing.Google Scholar
  27. 27.
    NCCLS document M7-A7. (2008) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically.Google Scholar
  28. 28.
    NCCLS document M26-A. (2005) Methods for determining bactericidal activity of antimicrobial agents.Google Scholar
  29. 29.
    Zhang, J. H., Chung, T. D., and Oldenburg, K. R. (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen 4, 67–73.PubMedCrossRefGoogle Scholar
  30. 30.
    Barrett, M. S., Wenzel, R. P., and Jones, R. N. (1992) In vitro activity of mersacidin (M87-1551), an investigational peptide antibiotic tested against Gram-positive bloodstream isolates. Diagn. Microbiol. Infect Dis. 15, 641–644.PubMedCrossRefGoogle Scholar
  31. 31.
    Schneider, T. R., Kärcher, J., Pohl, E., Lubini, P., and Sheldrick, G. M. (2000) Ab initio structure determination of the lantibiotic mersacidin. Acta Crystallogr. D Biol. Crystallogr. 56, 705–713.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Daniela Jabes
    • 1
  • Stefano Donadio
    • 1
  1. 1.NAICONS Scrl.MilanoItaly

Personalised recommendations