Potential Therapeutic Application of Host Defense Peptides

  • Lijuan Zhang
  • Timothy J. Falla
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 618)

Abstract

Host defense peptides (HDPs) are relatively small, mostly cationic, amphipathic, and of variable length, sequence, and structure. The majority of these peptides exhibit broad-spectrum antimicrobial activity and often activity against viruses and some cancer cell lines. In addition, HDPs also provide a range of immunomodulatory activities related to innate immunity defense, inflammation, and wound healing. The development of these multi-faceted molecules and their bioactivities into clinically important therapeutics is being pursued using a number of different approaches. Here we review the role of HDPs in nature and application of this role to the development of novel therapeutics.

Key words

Host defense peptides HDPs antimicrobial peptides anti-infectives antifungals anti-sepsis topical therapeutics immunomodulators 

References

  1. 1.
    Reddy, K. V., Yedery, R. D., and Aranha, C. (2004) Antimicrobial peptides: premises and promises. Int. J. Antimicrob. Agents 24, 536–547.PubMedCrossRefGoogle Scholar
  2. 2.
    Hancock, R. E. (1997) Peptide antibiotics. Lancet 349, 418–422.PubMedCrossRefGoogle Scholar
  3. 3.
    Toke, O. (2005) Antimicrobial peptides: new candidates in the fight against bacterial infections. Biopolymers 80, 717–735.PubMedCrossRefGoogle Scholar
  4. 4.
    Toke, O., Cegelski, L., and Schaefer, J. (2006) Peptide antibiotics in action: investigation of polypeptide chains in insoluble environments by rotational-echo double resonance. Biochim. Biophys. Acta 1758, 1314–1329.PubMedCrossRefGoogle Scholar
  5. 5.
    Selsted, M. E., Novotny, M. J., Morris, W. L., Tang, Y. Q., Smith, W., and Cullor, J. S. (1992) Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J. Biol. Chem. 267, 4292–4295.PubMedGoogle Scholar
  6. 6.
    Rozek, A., Friedrich, C. L., and Hancock, R. E. (2000) Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry 39, 15765–15774.PubMedCrossRefGoogle Scholar
  7. 7.
    Askou, H. J., Jakobsen, R. N., and Fojan, P. (2008) An atomic force microscopy study of the interactions between indolicidin and supported planar bilayers. J. Nanosci. Nanotechnol. 8, 4360–4369.PubMedCrossRefGoogle Scholar
  8. 8.
    Shaw, J. E., Alattia, J. R., Verity, J. E., Prive, G. G., and Yip, C. M. (2006) Mechanisms of antimicrobial peptide action: studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy. J. Struct. Biol. 154, 42–58.PubMedCrossRefGoogle Scholar
  9. 9.
    Shaw, J. E., Epand, R. F., Hsu, J. C., Mo, G. C., Epand, R. M., and Yip, C. M. (2008) Cationic peptide-induced remodelling of model membranes: direct visualization by in situ atomic force microscopy. J. Struct. Biol. 162, 121–138.PubMedCrossRefGoogle Scholar
  10. 10.
    Otvos, L., Jr. (2005) Antibacterial peptides and proteins with multiple cellular targets. J. Pept. Sci. 11, 697–706.PubMedCrossRefGoogle Scholar
  11. 11.
    Selsted, M. E. and Ouellette, A. J. (2005) Mammalian defensins in the antimicrobial immune response. Nat. Immunol. 6, 551–557.PubMedCrossRefGoogle Scholar
  12. 12.
    Radhakrishnan, Y., Hamil, K. G., Yenugu, S., Young, S. L., French, F. S., and Hall, S. H. (2005) Identification, characterization, and evolution of a primate beta-defensin gene cluster. Genes Immun. 6, 203–210.PubMedCrossRefGoogle Scholar
  13. 13.
    Zanetti, M., Gennaro, R., and Romeo, D. (1995) Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett. 374, 1–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Nizet, V. and Gallo, R. L. (2003) Cathelicidins and innate defense against invasive bacterial infection. Scand. J. Infect. Dis. 35, 670–676.PubMedCrossRefGoogle Scholar
  15. 15.
    Hilton, K. B. and Lambert, L. A. (2008) Molecular evolution and characterization of hepcidin gene products in vertebrates. Gene 415, 40–48.PubMedCrossRefGoogle Scholar
  16. 16.
    Rieg, S., Steffen, H., Seeber, S., et al. (2005) Deficiency of dermcidin-derived antimicrobial peptides in sweat of patients with atopic dermatitis correlates with an impaired innate defense of human skin in vivo. J. Immunol. 174, 8003–8010.PubMedGoogle Scholar
  17. 17.
    Oppenheim, F. G., Xu, T., McMillian, F. M., et al. (1988) Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J. Biol. Chem. 263, 7472–7477.PubMedGoogle Scholar
  18. 18.
    Chan, D. I., Hunter, H. N., Tack, B. F., and Vogel, H. J. (2008) Human macrophage inflammatory protein 3alpha: protein and peptide nuclear magnetic resonance solution structures, dimerization, dynamics, and anti-infective properties. Antimicrob. Agents Chemother. 52, 883–894.PubMedCrossRefGoogle Scholar
  19. 19.
    Maerki, C., Meuter, S., Liebi, M., et al. (2009) Potent and broad-spectrum antimicrobial activity of CXCL14 suggests an immediate role in skin infections. J. Immunol. 182, 507–514.PubMedGoogle Scholar
  20. 20.
    Radek, K. A., Lopez-Garcia, B., Hupe, M., et al. (2008) The neuroendocrine peptide catestatin is a cutaneous antimicrobial and induced in the skin after injury. J. Invest. Dermatol. 128, 1525–1534.PubMedCrossRefGoogle Scholar
  21. 21.
    Egesten, A., Eliasson, M., Johansson, H. M., et al. (2007) The CXC chemokine MIG/CXCL9 is important in innate immunity against Streptococcus pyogenes. J. Infect. Dis. 195, 684–693.PubMedCrossRefGoogle Scholar
  22. 22.
    Eliasson, M., Frick, I. M., Collin, M., Sorensen, O. E., Bjorck, L., and Egesten, A. (2007) M1 protein of Streptococcus pyogenes increases production of the antibacterial CXC chemokine MIG/CXCL9 in pharyngeal epithelial cells. Microb. Pathog. 43, 224–233.PubMedCrossRefGoogle Scholar
  23. 23.
    Linge, H. M., Collin, M., Nordenfelt, P., Morgelin, M., Malmsten, M., and Egesten, A. (2008) The human CXC chemokine granulocyte chemotactic protein 2 (GCP-2)/CXCL6 possesses membrane-disrupting properties and is antibacterial. Antimicrob. Agents Chemother. 52, 2599–2607.PubMedCrossRefGoogle Scholar
  24. 24.
    Collin, M., Linge, H. M., Bjartell, A., Giwercman, A., Malm, J., and Egesten, A. (2008) Constitutive expression of the antibacterial CXC chemokine GCP-2/CXCL6 by epithelial cells of the male reproductive tract. J. Reprod. Immunol. 79, 37–43.PubMedCrossRefGoogle Scholar
  25. 25.
    Linge, H. M., Collin, M., Giwercman, A., Malm, J., Bjartell, A., and Egesten, A. (2008) The antibacterial chemokine MIG/CXCL9 is constitutively expressed in epithelial cells of the male urogenital tract and is present in seminal plasma. J. Interferon Cytokine Res. 28, 191–196.PubMedCrossRefGoogle Scholar
  26. 26.
    Di Nardo, A., Yamasaki, K., Dorschner, R. A., Lai, Y., and Gallo, R. L. (2008) Mast cell cathelicidin antimicrobial peptide prevents invasive group A Streptococcus infection of the skin. J. Immunol. 180, 7565–7573.PubMedGoogle Scholar
  27. 27.
    De Benedetto, A., Agnihothri, R., McGirt, L. Y., Bankova, L. G., and Beck, L. A. (2009) Atopic dermatitis: a disease caused by innate immune defects? J. Invest. Dermatol. 129, 14–30.PubMedCrossRefGoogle Scholar
  28. 28.
    Howell, M. D., Wollenberg, A., Gallo, R. L., et al. (2006) Cathelicidin deficiency predisposes to eczema herpeticum. J. Allergy Clin. Immunol. 117, 836–841.PubMedCrossRefGoogle Scholar
  29. 29.
    Howell, M. D., Jones, J. F., Kisich, K. O., Streib, J. E., Gallo, R. L., and Leung, D. Y. (2004) Selective killing of vaccinia virus by LL-37: implications for eczema vaccinatum. J. Immunol. 172, 1763–1767.PubMedGoogle Scholar
  30. 30.
    Lee, P. H., Ohtake, T., Zaiou, M., et al. (2005) Expression of an additional cathelicidin antimicrobial peptide protects against bacterial skin infection. Proc. Natl. Acad. Sci. USA 102, 3750–3755.PubMedCrossRefGoogle Scholar
  31. 31.
    Schittek, B., Paulmann, M., Senyurek, I., and Steffen, H. (2008) The role of antimicrobial peptides in human skin and in skin infectious diseases. Infect. Disord. Drug Targets 8, 135–143.PubMedCrossRefGoogle Scholar
  32. 32.
    Lee, D. Y., Yamasaki, K., Rudsil, J., et al. (2008) Sebocytes express functional cathelicidin antimicrobial peptides and can act to kill Propionibacterium acnes. J. Invest. Dermatol. 128, 1863–1866.PubMedCrossRefGoogle Scholar
  33. 33.
    McInturff, J. E., Wang, S. J., Machleidt, T., et al. (2005) Granulysin-derived peptides demonstrate antimicrobial and anti-inflammatory effects against Propionibacterium acnes. J. Invest. Dermatol. 125, 256–263.PubMedCrossRefGoogle Scholar
  34. 34.
    Temple, M. E. and Nahata, M. C. (2000) Pharmacotherapy of lower limb diabetic ulcers. J. Am. Geriatr. Soc. 48, 822–888.PubMedGoogle Scholar
  35. 35.
    Iwatsuki, K., Yamasaki, O., Morizane, S., and Oono, T. (2006) Staphylococcal cutaneous infections: invasion, evasion and aggression. J. Dermatol. Sci. 42, 203–214.PubMedCrossRefGoogle Scholar
  36. 36.
    Jacobsen, F., Mohammadi-Tabrisi, A., Hirsch, T., et al. (2007) Antimicrobial activity of the recombinant designer host defence peptide P-novispirin G10 in infected full-thickness wounds of porcine skin. J. Antimicrob. Chemother. 59, 493–498.PubMedCrossRefGoogle Scholar
  37. 37.
    Lamb, H. M. and Wiseman, L. R. (1998) Pexiganan acetate. Drugs 56, 1047–1052, discussion 1053–1054.PubMedCrossRefGoogle Scholar
  38. 38.
    Lipsky, B. A., Holroyd, K. J., and Zasloff, M. (2008) Topical versus systemic antimicrobial therapy for treating mildly infected diabetic foot ulcers: a randomized, controlled, double-blinded, multicenter trial of pexiganan cream. Clin. Infect. Dis. 47, 1537–1545.PubMedCrossRefGoogle Scholar
  39. 39.
    Chung, W. O., Dommisch, H., Yin, L., and Dale, B. A. (2007) Expression of defensins in gingiva and their role in periodontal health and disease. Curr. Pharm. Des. 13, 3073–3083.PubMedCrossRefGoogle Scholar
  40. 40.
    Aas, J. A., Paster, B. J., Stokes, L. N., Olsen, I., and Dewhirst, F. E. (2005) Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 43, 5721–5732.PubMedCrossRefGoogle Scholar
  41. 41.
    Dale, B. A. and Fredericks, L. P. (2005) Antimicrobial peptides in the oral environment: expression and function in health and disease. Curr. Issues Mol. Biol. 7, 119–133.PubMedGoogle Scholar
  42. 42.
    Vankeerberghen, A., Nuytten, H., Dierickx, K., Quirynen, M., Cassiman, J. J., and Cuppens, H. (2005) Differential induction of human beta-defensin expression by periodontal commensals and pathogens in periodontal pocket epithelial cells. J. Periodontol. 76, 1293–1303.PubMedCrossRefGoogle Scholar
  43. 43.
    Putsep, K., Carlsson, G., Boman, H. G., and Andersson, M. (2002) Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet 360, 1144–1149.PubMedCrossRefGoogle Scholar
  44. 44.
    Beckloff, N., Laube, D., Castro, T., et al. (2007) Activity of an antimicrobial peptide mimetic against planktonic and biofilm cultures of oral pathogens. Antimicrob. Agents Chemother. 51, 4125–4132.PubMedCrossRefGoogle Scholar
  45. 45.
    Faraj, J. A., Dorati, R., Schoubben, A., et al. (2007) Development of a peptide-containing chewing gum as a sustained release antiplaque antimicrobial delivery system. AAPS PharmSciTech 8, 26.PubMedCrossRefGoogle Scholar
  46. 46.
    Tanida, T., Okamoto, T., Okamoto, A., et al. (2003) Decreased excretion of antimicrobial proteins and peptides in saliva of patients with oral candidiasis. J. Oral Pathol. Med. 32, 586–594.PubMedCrossRefGoogle Scholar
  47. 47.
    Meyer, J. E., Harder, J., Gorogh, T., et al. (2004) Human beta-defensin-2 in oral cancer with opportunistic Candida infection. Anticancer Res. 24, 1025–1030.PubMedGoogle Scholar
  48. 48.
    Helmerhorst, E. J., Reijnders, I. M., van’t Hof, W., Simoons-Smit, I., Veerman, E. C., and Amerongen, A. V. (1999) Amphotericin B- and fluconazole-resistant Candida spp., Aspergillus fumigatus, and other newly emerging pathogenic fungi are susceptible to basic antifungal peptides. Antimicrob. Agents Chemother. 43, 702–704.PubMedGoogle Scholar
  49. 49.
    Yin, A., Margolis, H. C., Grogan, J., Yao, Y., Troxler, R. F., and Oppenheim, F. G. (2003) Physical parameters of hydroxyapatite adsorption and effect on candidacidal activity of histatins. Arch. Oral Biol. 48, 361–368.PubMedCrossRefGoogle Scholar
  50. 50.
    Castagnola, M., Inzitari, R., Rossetti, D. V., et al. (2004) A cascade of 24 histatins (histatin 3 fragments) in human saliva. Suggestions for a pre-secretory sequential cleavage pathway. J. Biol. Chem. 279, 41436–41443.PubMedCrossRefGoogle Scholar
  51. 51.
    Torres, S. R., Garzino-Demo, A., Meiller, T. F., Meeks, V., and Jabra-Rizk, M. A. (2009) Salivary histatin-5 and oral fungal colonisation in HIV+ individuals. Mycoses 52, 11–15.PubMedCrossRefGoogle Scholar
  52. 52.
    Rothstein, D. M., Spacciapoli, P., Tran, L. T., et al. (2001) Anticandida activity is retained in P-113, a 12-amino-acid fragment of histatin 5. Antimicrob. Agents Chemother. 45, 1367–1373.PubMedCrossRefGoogle Scholar
  53. 53.
    Hiemstra, P. S. (2007) The role of epithelial beta-defensins and cathelicidins in host defense of the lung. Exp. Lung Res. 33, 537–542.PubMedCrossRefGoogle Scholar
  54. 54.
    Bals, R., Wang, X., Wu, Z., et al. (1998) Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J. Clin. Invest. 102, 874–880.PubMedCrossRefGoogle Scholar
  55. 55.
    Cheung, Q. C., Turner, P. V., Song, C., et al. (2008) Enhanced resistance to bacterial infection in protegrin-1 transgenic mice. Antimicrob. Agents Chemother. 52, 1812–1819.PubMedCrossRefGoogle Scholar
  56. 56.
    Zhang, L., Parente, J., Harris, S. M., Woods, D. E., Hancock, R. E., and Falla, T. J. (2005) Antimicrobial peptide therapeutics for cystic fibrosis. Antimicrob. Agents Chemother. 49, 2921–2927.PubMedCrossRefGoogle Scholar
  57. 57.
    Falagas, M. E., Kasiakou, S. K., Tsiodras, S., and Michalopoulos, A. (2006) The use of intravenous and aerosolized polymyxins for the treatment of infections in critically ill patients: a review of the recent literature. Clin. Med. Res. 4, 138–146.PubMedCrossRefGoogle Scholar
  58. 58.
    Vallon-Eberhard, A., Makovitzki, A., Beauvais, A., Latge, J. P., Jung, S., and Shai, Y. (2008) Efficient clearance of Aspergillus fumigatus in murine lungs by an ultrashort antimicrobial lipopeptide, palmitoyl-lys-ala-DAla-lys. Antimicrob. Agents Chemother. 52, 3118–3126.PubMedCrossRefGoogle Scholar
  59. 59.
    Wang, G., Stange, E. F., and Wehkamp, J. (2007) Host-microbe interaction: mechanisms of defensin deficiency in Crohn’s disease. Expert Rev. Anti-infect. Ther. 5, 1049–1057.PubMedCrossRefGoogle Scholar
  60. 60.
    Wehkamp, J., Koslowski, M., Wang, G., and Stange, E. F. (2008) Barrier dysfunction due to distinct defensin deficiencies in small intestinal and colonic Crohn’s disease. Mucosal Immunol. 1(Suppl 1), S67–S74.PubMedCrossRefGoogle Scholar
  61. 61.
    Chakraborty, K., Ghosh, S., Kole, H., et al. (2008) Bacterial exotoxins downregulate cathelicidin (hCAP18/LL37) and human beta-defensin 1 (HBD-1) expression in the intestinal epithelial cells. Cell Microbiol. 10, 2520–2537.PubMedCrossRefGoogle Scholar
  62. 62.
    Iqbal, S. M. and Kaul, R. (2008) Mucosal innate immunity as a determinant of HIV susceptibility. Am. J. Reprod. Immunol. 59, 44–54.PubMedCrossRefGoogle Scholar
  63. 63.
    Kaul, R., Pettengell, C., Sheth, P. M., et al. (2008) The genital tract immune milieu: an important determinant of HIV susceptibility and secondary transmission. J. Reprod. Immunol. 77, 32–40.PubMedCrossRefGoogle Scholar
  64. 64.
    Valore, E. V., Wiley, D. J., and Ganz, T. (2006) Reversible deficiency of antimicrobial polypeptides in bacterial vaginosis. Infect. Immun. 74, 5693–5702.PubMedCrossRefGoogle Scholar
  65. 65.
    Zapata, W., Rodriguez, B., Weber, J., et al. (2008) Increased levels of human beta-defensins mRNA in sexually HIV-1 exposed but uninfected individuals. Curr. HIV Res. 6, 531–538.PubMedCrossRefGoogle Scholar
  66. 66.
    Cole, A. M. and Cole, A. L. (2008) Antimicrobial polypeptides are key anti-HIV-1 effector molecules of cervicovaginal host defense. Am. J. Reprod. Immunol. 59, 27–34.PubMedCrossRefGoogle Scholar
  67. 67.
    Bergman, P., Walter-Jallow, L., Broliden, K., Agerberth, B., and Soderlund, J. (2007) The antimicrobial peptide LL-37 inhibits HIV-1 replication. Curr. HIV Res. 5, 410–415.PubMedCrossRefGoogle Scholar
  68. 68.
    Cole, A. M., Hong, T., Boo, L. M., et al. (2002) Retrocyclin: a primate peptide that protects cells from infection by T- and M-tropic strains of HIV-1. Proc. Natl. Acad. Sci. USA 99, 1813–1818.PubMedCrossRefGoogle Scholar
  69. 69.
    Cole, A. L., Herasimtschuk, A., Gupta, P., Waring, A. J., Lehrer, R. I., and Cole, A. M. (2007) The retrocyclin analogue RC-101 prevents human immunodeficiency virus type 1 infection of a model human cervicovaginal tissue construct. Immunology 121, 140–145.PubMedCrossRefGoogle Scholar
  70. 70.
    Aranha, C. C., Gupta, S. M., and Reddy, K. V. (2008) Assessment of cervicovaginal cytokine levels following exposure to microbicide Nisin gel in rabbits. Cytokine 43, 63–70.PubMedCrossRefGoogle Scholar
  71. 71.
    Donald, C. D., Sun, C. Q., Lim, S. D., et al. (2003) Cancer-specific loss of beta-defensin 1 in renal and prostatic carcinomas. Lab. Invest. 83, 501–505.PubMedGoogle Scholar
  72. 72.
    Sun, C. Q., Arnold, R., Fernandez-Golarz, C., et al. (2006) Human beta-defensin-1, a potential chromosome 8p tumor suppressor: control of transcription and induction of apoptosis in renal cell carcinoma. Cancer Res. 66, 8542–8549.PubMedCrossRefGoogle Scholar
  73. 73.
    Bullard, R. S., Gibson, W., Bose, S. K., et al. (2008) Functional analysis of the host defense peptide Human Beta Defensin-1: new insight into its potential role in cancer. Mol. Immunol. 45, 839–848.PubMedCrossRefGoogle Scholar
  74. 74.
    Gibson, W., Green, A., Bullard, R. S., Eaddy, A. C., and Donald, C. D. (2007) Inhibition of PAX2 expression results in alternate cell death pathways in prostate cancer cells differing in p53 status. Cancer Lett. 248, 251–261.PubMedCrossRefGoogle Scholar
  75. 75.
    Bose, S. K., Gibson, W., Bullard, R. S., and Donald, C. D. (2008) PAX2 oncogene negatively regulates the expression of the host defense peptide human beta defensin-1 in prostate cancer. Mol. Immunol. 46, 1140–1148.PubMedCrossRefGoogle Scholar
  76. 76.
    Baker, M. A., Maloy, W. L., Zasloff, M., and Jacob, L. S. (1993) Anticancer efficacy of Magainin 2 and analogue peptides. Cancer Res. 53, 3052–3057.PubMedGoogle Scholar
  77. 77.
    Hansel, W., Leuschner, C., and Enright, F. (2007) Conjugates of lytic peptides and LHRH or betaCG target and cause necrosis of prostate cancers and metastases. Mol. Cell Endocrinol. 269, 26–33.PubMedCrossRefGoogle Scholar
  78. 78.
    Leuschner, C., Enright, F. M., Gawronska, B., and Hansel, W. (2003) Membrane disrupting lytic peptide conjugates destroy hormone dependent and independent breast cancer cells in vitro and in vivo. Breast Cancer Res. Treat. 78, 17–27.PubMedCrossRefGoogle Scholar
  79. 79.
    Ghavami, S., Asoodeh, A., Klonisch, T., et al. (2008) Brevinin-2R(1) semi-selectively kills cancer cells by a distinct mechanism, which involves the lysosomal-mitochondrial death pathway. J. Cell. Mol. Med. 12, 1005–1022.PubMedCrossRefGoogle Scholar
  80. 80.
    Suttmann, H., Retz, M., Paulsen, F., et al. (2008) Antimicrobial peptides of the Cecropin-family show potent antitumor activity against bladder cancer cells. BMC Urol. 8, 5.PubMedCrossRefGoogle Scholar
  81. 81.
    Rodrigues, E. G., Dobroff, A. S., Cavarsan, C. F., et al. (2008) Effective topical treatment of subcutaneous murine B16F10-Nex2 melanoma by the antimicrobial peptide gomesin. Neoplasia 10, 61–68.PubMedCrossRefGoogle Scholar
  82. 82.
    Xu, N., Wang, Y. S., Pan, W. B., et al. (2008) Human alpha-defensin-1 inhibits growth of human lung adenocarcinoma xenograft in nude mice. Mol. Cancer Ther. 7, 1588–1597.PubMedCrossRefGoogle Scholar
  83. 83.
    Yang, D., Chertov, O., and Oppenheim, J. J. (2001) Participation of mammalian defensins and cathelicidins in anti-microbial immunity: receptors and activities of human defensins and cathelicidin (LL-37). J. Leukoc. Biol. 69, 691–697.PubMedGoogle Scholar
  84. 84.
    Niyonsaba, F., Suzuki, A., Ushio, H., Nagaoka, I., Ogawa, H., and Okumura, K. (2008) The human antimicrobial peptide dermcidin activates normal human keratinocytes. Br. J. Dermatol. 160, 243–249.PubMedCrossRefGoogle Scholar
  85. 85.
    Mookherjee, N., Brown, K. L., Bowdish, D. M., et al. (2006) Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J. Immunol. 176, 2455–2464.PubMedGoogle Scholar
  86. 86.
    Mookherjee, N., Rehaume, L. M., and Hancock, R. E. (2007) Cathelicidins and functional analogues as antisepsis molecules. Expert Opin. Ther. Targets 11, 993–1004.PubMedCrossRefGoogle Scholar
  87. 87.
    Book, M., Chen, Q., Lehmann, L. E., et al. (2007) Inducibility of the endogenous antibiotic peptide beta-defensin 2 is impaired in patients with severe sepsis. Crit. Care 11, R19.PubMedCrossRefGoogle Scholar
  88. 88.
    Torossian, A., Gurschi, E., Bals, R., Vassiliou, T., Wulf, H. F., and Bauhofer, A. (2007) Effects of the antimicrobial peptide LL-37 and hyperthermic preconditioning in septic rats. Anesthesiology 107, 437–441.PubMedCrossRefGoogle Scholar
  89. 89.
    Di Nardo, A., Braff, M. H., Taylor, K. R., et al. (2007) Cathelicidin antimicrobial peptides block dendritic cell TLR4 activation and allergic contact sensitization. J. Immunol. 178, 1829–1834.PubMedGoogle Scholar
  90. 90.
    Deslouches, B., Gonzalez, I. A., De Almeida, D., et al. (2007) De novo-derived cationic antimicrobial peptide activity in a murine model of Pseudomonas aeruginosa bacteraemia. J. Antimicrob. Chemother. 60, 669–672.PubMedCrossRefGoogle Scholar
  91. 91.
    Wakabayashi, H., Takakura, N., Yamauchi, K., and Tamura, Y. (2006) Modulation of immunity-related gene expression in small intestines of mice by oral administration of lactoferrin. Clin. Vaccine Immunol. 13, 239–245.PubMedCrossRefGoogle Scholar
  92. 92.
    Lienkamp, K., Madkour, A. E., Musante, A., Nelson, C. F., Nusslein, K., and Tew, G. N. (2008) Antimicrobial polymers prepared by ROMP with unprecedented selectivity: a molecular construction kit approach. J. Am. Chem. Soc. 130, 9836–9843.PubMedCrossRefGoogle Scholar
  93. 93.
    Statz, A. R., Park, J. P., Chongsiriwatana, N. P., Barron, A. E., and Messersmith, P. B. (2008) Surface-immobilised antimicrobial peptoids. Biofouling 24, 439–448.PubMedCrossRefGoogle Scholar
  94. 94.
    Willcox, M. D., Hume, E. B., Aliwarga, Y., Kumar, N., and Cole, N. (2008) A novel cationic-peptide coating for the prevention of microbial colonization on contact lenses. J. Appl. Microbiol. 105, 1817–1825.PubMedCrossRefGoogle Scholar
  95. 95.
    Lai, X. Z., Feng, Y., Pollard, J., et al. (2008) Ceragenins: cholic acid-based mimics of antimicrobial peptides. Acc. Chem. Res. 41, 1233–1240.PubMedCrossRefGoogle Scholar
  96. 96.
    Epand, R. F., Savage, P. B., and Epand, R. M. (2007) Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins). Biochim. Biophys. Acta. 1768, 2500–2509.PubMedCrossRefGoogle Scholar
  97. 97.
    Chin, J. N., Rybak, M. J., Cheung, C. M., and Savage, P. B. (2007) Antimicrobial activities of ceragenins against clinical isolates of resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 51, 1268–1273.PubMedCrossRefGoogle Scholar
  98. 98.
    Van Bambeke, F., Mingeot-Leclercq, M. P., Struelens, M. J., and Tulkens, P. M. (2008) The bacterial envelope as a target for novel anti-MRSA antibiotics. Trends Pharmacol. Sci. 29, 124–134.PubMedCrossRefGoogle Scholar
  99. 99.
    Rotem, S. and Mor, A. (2009) Antimicrobial peptide mimics for improved therapeutic properties. Biochim. Biophys. Acta 1788, 1582–1592.PubMedGoogle Scholar
  100. 100.
    Sarig, H., Rotem, S., Ziserman, L., Danino, D., and Mor, A. (2008) Impact of self-assembly properties on antibacterial activity of short acyl-lysine oligomers. Antimicrob. Agents Chemother. 52, 4308–4314.PubMedCrossRefGoogle Scholar
  101. 101.
    Fritsche, T. R., Rhomberg, P. R., Sader, H. S., and Jones, R. N. (2008) Antimicrobial activity of omiganan pentahydrochloride against contemporary fungal pathogens responsible for catheter-associated infections. Antimicrob. Agents Chemother. 52, 1187–1189.PubMedCrossRefGoogle Scholar
  102. 102.
    van den Berg, H. R., Khan, N. A., van der Zee, M., et al. (2009) Synthetic oligopeptides related to the [beta]-subunit of human chorionic gonadotropin attenuate inflammation and liver damage after (trauma) hemorrhagic shock and resuscitation. Shock 31, 285–291.PubMedCrossRefGoogle Scholar
  103. 103.
    Benner, R. and Khan, N. A. (2005) Dissection of systems, cell populations and molecules. Scand. J. Immunol. 62(Suppl 1), 62–66.PubMedCrossRefGoogle Scholar
  104. 104.
    Falla, T., Harris, S. M., and Zhang, L. (2007) Novel antiinfective for the treatment and prevention of wound infection, ASM Biodefense and emerging diseases, Washington, DC, February 27th–March 2nd.Google Scholar
  105. 105.
    Zhang, L., Harris, S. M., and Falla, T. J. (2007) Lipohexapeptides as topical therapeutics for fungal infections, 107th American Society of Microbiology General Meeting, Toronto Canada, May 21–25.Google Scholar
  106. 106.
    Mygind, P. H., Fischer, R. L., Schnorr, K. M., et al. (2005) Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437, 975–980.PubMedCrossRefGoogle Scholar
  107. 107.
    Ostergaard, C., Sandvang, D., Frimodt-Moller, N., and Kristensen, H. H. (2009) High CSF penetration and potent CSF bactericidal activity of NZ2114 – a novel Plectasin variant – during experimental pneumococcal meningitis. Antimicrob. Agents Chemother. 53, 1581–1585.PubMedCrossRefGoogle Scholar
  108. 108.
    Robinson, J. A., Shankaramma, S. C., Jetter, P., et al. (2005) Properties and structure-activity studies of cyclic beta-hairpin peptidomimetics based on the cationic antimicrobial peptide protegrin I. Bioorg. Med. Chem. 13, 2055–2064.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Lijuan Zhang
    • 1
  • Timothy J. Falla
    • 1
  1. 1.Helix Biomedix Inc.BothellUSA

Personalised recommendations