Molecular Simulations of Antimicrobial Peptides

  • Allison Langham
  • Yiannis N. Kaznessis
Part of the Methods in Molecular Biology book series (MIMB, volume 618)


Recent advances in molecular dynamics (MD) simulation methods and in available computational resources have allowed for more reliable simulations of biological phenomena. From all-atom MD simulations, we are now able to visualize in detail the interactions between antimicrobial peptides (AMPs) and a variety of membrane mimics. This helps us to understand the molecular mechanisms of antimicrobial activity and toxicity. This chapter describes how to set up and conduct molecular dynamics simulations of AMPs and membrane mimics. Details are given for the construction of systems of interest for studying AMPs, which can include simulations of peptides in water, micelles, or lipid bilayers. Explanations of the parameters needed for running a simulation are provided as well.

Key words

Molecular dynamics CHARMM NAMD, micelles, lipid bilayers 


  1. 1.
    Allen, M. P. and Tildesley, D. J. (1987) Computer Simulations of Liquids. Oxford: Clarendon Press.Google Scholar
  2. 2.
    Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham, T. E., III, DeBolt, S., Ferguson, D., Seibel, G., and Kollman, P. (1995) Amber, a computer program for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to elucidate the structures and energies of molecules. Comp. Phys. Commun. 91, 1–41.CrossRefGoogle Scholar
  3. 3.
    Jorgensen, W. L. and Tirado-Rives, J. (1988) The OPLS [optimized potentials for lipid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110, 1657–1666.CrossRefGoogle Scholar
  4. 4.
    Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and Karplus, M. (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics simulations. J. Comp. Chem. 4, 187–217.CrossRefGoogle Scholar
  5. 5.
    Berendsen, H. J. C., van der Spoel, D. L., and van Drunen, R. (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comp. Phys. Comm. 91, 43–56.CrossRefGoogle Scholar
  6. 6.
    Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kale, L., and Schulten, K. (2005) Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802.PubMedCrossRefGoogle Scholar
  7. 7.
    Patra, M., Karttunen, M., Hyvönen, M. T., Falck, E., Lindqvist, P., and Vattulainen, I. (2003) Molecular dynamics simulations of lipid bilayers: major artifacts due to truncating electrostatic interactions. Biophys J. 84, 3636–3645.PubMedCrossRefGoogle Scholar
  8. 8.
    Martyna, G. J., Tobias, D. J., and Klein, M. L. (1994) Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101, 4177–4189.CrossRefGoogle Scholar
  9. 9.
    Feller, S. E., Zhang, Y., Pastor, R. W., and Brooks, B. R. (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J. Chem. Phys. 103, 4613–4621.CrossRefGoogle Scholar
  10. 10.
    Bhandarkar, M., Brunner, R., Chipot, C., Dalke, A., Dixit, S., Grayson, P., Gullingsrud, J., Gursoy, A., Hardy, D., Hénin, J., Humphrey, W., Hurwitz, D., Krawetz, N., Kumar, S., Nelson, M., Phillips, J., Shinozaki, A., Zheng, G., and Zhu, F. (2005) NAMD User’s Guide Version 2.6b1. Urbana: Theoretical Biophysics Group, University of Illinois and Beckman Institute.Google Scholar
  11. 11.
    Leontiadou, H., Mark, A. E., and Marrink, S. J. (2006) Antimicrobial peptides in action. J. Am. Chem. Soc. 128, 12156–12161.PubMedCrossRefGoogle Scholar
  12. 12.
    Roux, B. and Simonson, T. (1999) Implicit solvent models. Biophys. Chem. 78, 1–20.PubMedCrossRefGoogle Scholar
  13. 13.
    Dominy, B. N. (1999) Parameterization and application of an implicit solvent model for macromolecules. Mol. Simulat. 24, 259–274.CrossRefGoogle Scholar
  14. 14.
    Brogden, K. A. (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?. Nat. Rev. Microbiol. 3, 238–250.PubMedCrossRefGoogle Scholar
  15. 15.
    Kandasamy, S. K. and Larson, R. G. (2007) Binding modes of protegrin-1, a beta-strand antimicrobial peptide, in lipid bilayers. Mol. Simulat. 33, 799–807.CrossRefGoogle Scholar
  16. 16.
    Leontiadou, H., Mark, A. E., and Marrink, S. J. (2007) Ion transport across transmembrane pores. Biophys. J. 92, 4209–4215.PubMedCrossRefGoogle Scholar
  17. 17.
    Parvu, L. (2003) QSAR – a piece of drug design. J. Cell. Mol. Med. 7, 333–335.PubMedCrossRefGoogle Scholar
  18. 18.
    Jenssen, H., Fjell, C. D., Cherkasov, A., and Hancock, R. E. (2008) QSAR modeling and computer-aided design of antimicrobial peptides. J. Pept. Sci. 14, 110–114.PubMedCrossRefGoogle Scholar
  19. 19.
    Kaznessis, Y. N., Snow, M. E., and Blankley, C. J. (2001) Prediction of blood-brain partitioning using Monte Carlo simulations of molecules in water. J. Comput. Aid. Mol. Des. 15, 697–708.CrossRefGoogle Scholar
  20. 20.
    Lejon, T., Stiberg, T., Strøm, M. B., and Svendsen, J. S. (2004) Prediction of antibiotic activity and synthesis of new pentadecapeptides based on lactoferricins. J. Pept. Sci. 10, 329–335.PubMedCrossRefGoogle Scholar
  21. 21.
    Lejon, T., Strom, M. B., and Svendsen, J. S. (2001) Antibiotic activity of pentadecapeptides modelled from amino acid descriptors. J. Pept. Sci. 7, 74–81.PubMedCrossRefGoogle Scholar
  22. 22.
    Lejon, T., Svendsen, J. S., and Haug, B. E. (2002) Simple parameterization of non-proteinogenic amino acids for QSAR of antibacterial peptides. J. Pept. Sci. 8, 302–306.PubMedCrossRefGoogle Scholar
  23. 23.
    Marrero-Ponce, Y., Torrens, F., Alvarado, Y. J., and Rotondo, R. (2006) Bond-based global and local (bond, group and bond-type) quadratic indices and their applications to computer-aided molecular design. 1. QSPR studies of diverse sets of organic chemicals. J. Comput. Aid. Mol. Des. 20, 685–701.CrossRefGoogle Scholar
  24. 24.
    Beswick, V., Guerois, R., Cordier-Ochsenbein, F., Coïc, Y. M., Tam, H. D., Tostain, J., Noël, J. P., Sanson, A., and Neumann, J. M. (1999) Dodecylphosphocholine micelles as a membrane-like environment: new results from NMR relaxation and paramagnetic relaxation enhancement analysis. Eur. Biophys. J. 28, 48–58.PubMedCrossRefGoogle Scholar
  25. 25.
    Kallick, D. A., Tessmer, M. R., Watts, C. R., and Li, C. Y. (1995) The use of dodecylphosphocholine micelles in solution NMR. J. Magn. Reson. B 109, 60–65.PubMedCrossRefGoogle Scholar
  26. 26.
    Kloosterman, D. A., Goodwin, J. T., Burton, P. S., Conradi, R. A., Stockman, B. J., Scahill, T. A., and Blinn, J. R. (2000) An NMR study of conformations of substituted dipeptides in dodecylphosphocholine micelles: implications for drug transport. Biopolymers 53, 396–410.PubMedCrossRefGoogle Scholar
  27. 27.
    Lauterwein, J., Bösch, C., Brown, L. R., and Wüthrich, K. (1979) Physicochemical studies of the protein-lipid interactions in melittin-containing micelles. Biochim. Biophys. Acta 556, 244–264.PubMedCrossRefGoogle Scholar
  28. 28.
    Fernandez, C. and Wuthrich, K. (2003) NMR solution structure determination of membrane proteins reconstituted in detergent micelles. FEBS Lett. 555, 144–150.PubMedCrossRefGoogle Scholar
  29. 29.
    Rakitin, A. R. and Pack, G. R. (2004) Molecular dynamics simulations of ionic interactions with dodecyl sulfate micelles. J. Phys. Chem. B. 108, 2712–2716.CrossRefGoogle Scholar
  30. 30.
    Wymore, T., Gao, X. F., and Wong, T. C. (1999) Molecular dynamics simulation of the structure and dynamics of a dodecylphosphocholine micelle in aqueous solution. J. Mol. Struct. 485, 195–210.CrossRefGoogle Scholar
  31. 31.
    Wong, T. C. and Kamath, S. (2002) Molecular dynamics simulations of adrenocorticotropin (1–24) peptide in a solvated dodecylphosphocholine (DPC) micelle and in a dimyistoylphosphatidylcholine (DMPC) bilayer. J. Biomol. Struct. Dyn. 20, 39–57.PubMedCrossRefGoogle Scholar
  32. 32.
    Tieleman, D. P., van der Spoel, D., and Berendsen, H. J. C. (2000) Molecular dynamics simulations of dodecylphosphocholine micelles at three different aggregate sizes: micellar structure and lipid chain relaxation. J. Phys. Chem. B 104, 6380–6388.CrossRefGoogle Scholar
  33. 33.
    Shepherd, C. M., Schaus, K. A., Vogel, H. J., and Juffer, A. H. (2001) Molecular dynamics study of peptide-bilayer adsorption. Biophys. J. 80, 579–596.PubMedCrossRefGoogle Scholar
  34. 34.
    Kandasamy, S. K. and Larson, R. G. (2004) Binding and insertion of alpha-helical anti-microbial peptides in POPC bilayers studied by molecular dynamics simulations. Chem. Phys. Lipids 132, 113–132.PubMedCrossRefGoogle Scholar
  35. 35.
    Bruce, C. D., Berkowitz, M. L., Perera, L., and Forbes, M. D. E. (2002) Molecular dynamics simulation of sodium dodecyl sulfate micelle in water: micellar structural characteristics and counterion distribution. J. Phys. Chem. B. 106, 3788–3793.CrossRefGoogle Scholar
  36. 36.
    MacKerell, A. D. (1995) Molecular dynamics simulation analysis of a sodium dodecyl sulfate micelle in aqueous solution: decreased fluidity of the micelle hydrocarbon interior. J. Phys. Chem. 99, 327–341.CrossRefGoogle Scholar
  37. 37.
    Wymore, T. and Wong, T. C. (1999) Molecular dynamics study of substance P peptides partitioned in a sodium dodecylsulfate micelle. Biophys. J. 76, 1213–1227.PubMedCrossRefGoogle Scholar
  38. 38.
    Yang, S. T., Yub Shin, S. Y., Kim, Y. C., Kim, Y., Hahm, K. S., and Kim, J. I. (2002) Conformation-dependent antibiotic activity of tritrpticin, a cathelicidin-derived antimicrobial peptide. Biochem. Biophys. Res. Commun. 296, 1044–1050.PubMedCrossRefGoogle Scholar
  39. 39.
    Bond, P. J., Cuthbertson, J., and Sansom, M. S. (2005) Simulation studies of the interactions between membrane proteins and detergents. Biochem. Soc. Trans. 33, 910–912.PubMedCrossRefGoogle Scholar
  40. 40.
    Bond, P. J., Cuthbertson, J. M., Deol, S. S., and Sansom, M. S. (2004) MD simulations of spontaneous membrane protein/detergent micelle formation. J. Am. Chem. Soc. 126, 15948–15949.PubMedCrossRefGoogle Scholar
  41. 41.
    Bond, P. J. and Sansom, M. S. (2003) Membrane protein dynamics versus environment: simulations of OmpA in a micelle and in a bilayer. J. Mol. Biol. 329, 1035–1053.PubMedCrossRefGoogle Scholar
  42. 42.
    Marrink, S. J. and Mark, A. E. (2002) Molecular dynamics simulations of mixed micelles modeling human bile. Biochemistry 41, 5375–5382.PubMedCrossRefGoogle Scholar
  43. 43.
    Wendoloski, J. J., Kimatian, S. J., Schutt, C. E., and Salemme, F. R. (1989) Molecular dynamics simulation of a phospholipid micelle. Science 243, 636–638.PubMedCrossRefGoogle Scholar
  44. 44.
    Khandelia, H. and Kaznessis, Y. (2007) Cation-pi interactions stabilize the structure of the antimicrobial peptide indolicidin near membranes: molecular dynamics simulations. J. Phys. Chem. B 111, 242–250.PubMedCrossRefGoogle Scholar
  45. 45.
    Langham, A. A., Ahmad, A. S., and Kaznessis, Y. N. (2008) On the nature of antimicrobial activity: a model for protegrin-1 pores. J. Am. Chem. Soc. 130, 4338–4346.PubMedCrossRefGoogle Scholar
  46. 46.
    Feller, S. E. and Pastor, R. W. (1996) On simulating lipid bilayers with an applied surface tension: periodic boundary conditions and undulations. Biophys. J. 71, 1350–1355.PubMedCrossRefGoogle Scholar
  47. 47.
    Jahnig, F. (1996) What is the surface tension of a lipid bilayer membrane? Biophys. J. 71, 1348–1349.PubMedCrossRefGoogle Scholar
  48. 48.
    Roux, B. (1996) Commentary: surface tension of biomembranes. Biophys. J. 71, 1346–1347.PubMedCrossRefGoogle Scholar
  49. 49.
    Jensen, M. O., Mouritsen, O. G., and Peters, G. H. (2004) Simulations of a membrane-anchored peptide: structure, dynamics, and influence on bilayer properties. Biophys. J. 86, 3556–3575.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Allison Langham
    • 1
  • Yiannis N. Kaznessis
    • 1
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisUSA

Personalised recommendations