Advertisement

Comparing Bacterial Membrane Interactions of Antimicrobial Peptides and Their Mimics

  • Nathaniel P. Chongsiriwatana
  • Annelise E. Barron
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 618)

Abstract

Interactions with bacterial membranes are integral to the mechanisms of action of all antimicrobial peptides (AMPs), regardless of their final cellular targets. Here, we describe in detail two biophysical techniques that can be used to measure the membrane activities of AMPs and antimicrobial peptidomimetics: (1) a calcein leakage assay to investigate interactions between AMPs/peptidomimetics with large unilamellar vesicles and (2) a potential-sensitive dye-based depolarization assay to investigate interactions with the membranes of live bacteria. By comparing the membrane interactions of AMPs and their mimics, these techniques can provide insights into their extent of mimicry and their antimicrobial mechanisms.

Key words

Calcein leakage large unilamellar vesicles membrane depolarization membrane potential diSC3–5 

Notes

Acknowledgments

The authors would like to thank Professor Robert MacDonald, Dr. Joshua Rausch, Dr. Jiwon Seo, and Ms. Meera Rao for their assistance in the development of these protocols. This work was supported by a Department of Homeland Security Fellowship and NIH Grants 1 R01 HL67984 and 1 R01 AI072666.

References

  1. 1.
    Seebach, D., Overhand, M., Kühnle, F. N. M., Martinoni, B., Oberer, L., Hommel, U., and Widmer, H. (1996) β-peptides: synthesis by Arndt-Eistert homologation with concomitant peptide coupling. Structure determination by NMR and CD spectroscopy and by X-ray crystallography. Helical secondary structure of a β-hexapeptide in solution and its stability towards pepsin. Helv. Chim. Acta 79, 913–941.CrossRefGoogle Scholar
  2. 2.
    Porter, E. A., Weisblum, B., and Gellman, S. H. (2002) Mimicry of host-defense peptides by unnatural oligomers: antimicrobial beta-peptides. J. Am. Chem. Soc. 124, 7324–7330.PubMedCrossRefGoogle Scholar
  3. 3.
    Hamper, B. C., Kolodziej, S. A., Scates, A. M., Smith, R. G., and Cortez, E. (1998) Solid phase synthesis of β-peptoids: N-substituted β-aminopropionic acid oligomers. J. Org. Chem. 63, 708–718.PubMedCrossRefGoogle Scholar
  4. 4.
    Epand, R. F., Schmitt, M. A., Gellman, S. H., Sen, A., Auger, M., Hughes, D. W., and Epand, R. M. (2005) Bacterial species selective toxicity of two isomeric alpha/beta-peptides: role of membrane lipids. Mol. Membr. Biol. 22, 457–469.PubMedCrossRefGoogle Scholar
  5. 5.
    Violette, A., Averlant-Petit, M. C., Semetey, V., Hemmerlin, C., Casimir, R., Graff, R., Marraud, M., Briand, J.-P., Rognan, D., and Guichard, G. (2005) N,N’-linked oligoureas as foldamers: chain length requirements for helix formation in protic solvent investigated by circular dichroism, NMR spectroscopy, and molecular dynamics. J. Am. Chem. Soc. 127, 2156–2164.PubMedCrossRefGoogle Scholar
  6. 6.
    Arnt, L., and Tew, G. N. (2002) New poly(phenyleneethynylene)s with cationic, facially amphipathic structures. J. Am. Chem. Soc. 124, 7664–7665.PubMedCrossRefGoogle Scholar
  7. 7.
    Patch, J. A., and Barron, A. E. (2003) Helical peptoid mimics of magainin-2 amide. J. Am. Chem. Soc. 125, 12092–12093.PubMedCrossRefGoogle Scholar
  8. 8.
    Seurynck, S. L., Patch, J. A., and Barron, A. E. (2005) Simple, helical peptoid analogs of lung surfactant protein B. Chem. Biol. 12, 77–88.PubMedCrossRefGoogle Scholar
  9. 9.
    Statz, A. R., Meagher, R. J., Barron, A. E., and Messersmith, P. B. (2005) New peptidomimetic polymers for antifouling surfaces. J. Am. Chem. Soc. 127, 7972–7973.PubMedCrossRefGoogle Scholar
  10. 10.
    Brogden, K. A. (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3, 238–250.PubMedCrossRefGoogle Scholar
  11. 11.
    Hale, J. D. F., and Hancock, R. E. W. (2007) Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev. Anti Infect. Ther. 5, 951–959.PubMedCrossRefGoogle Scholar
  12. 12.
    Jelokhani-Niaraki, M., Prenner, E. J., Kay, C. M., McElhaney, R. N., and Hodges, R. S. (2002) Conformation and interaction of the cyclic cationic antimicrobial peptides in lipid bilayers. J. Pept. Res. 60, 23–36.PubMedCrossRefGoogle Scholar
  13. 13.
    Jin, Y., Mozsolits, H., Hammer, J., Zmuda, E., Zhu, F., Zhang, Y., Aguilar, M. I., and Blazyk, J. (2003) Influence of tryptophan on lipid binding of linear amphipathic cationic antimicrobial peptides. Biochemistry 42, 9395–9405.PubMedCrossRefGoogle Scholar
  14. 14.
    Matsuzaki, K., Murase, O., Tokuda, H., Funakoshi, S., Fujii, N., and Miyajima, K. (1994) Orientational and aggregational states of magainin 2 in phospholipid bilayers. Biochemistry 33, 3342–3349.PubMedCrossRefGoogle Scholar
  15. 15.
    Raghuraman, H., and Chattopadhyay, A. (2004) Interaction of melittin with membrane cholesterol: a fluorescence approach. Biophys. J. 87, 2419–2432.PubMedCrossRefGoogle Scholar
  16. 16.
    Tachi, T., Epand, R. F., Epand, R. M., and Matsuzaki, K. (2002) Position-dependent hydrophobicity of the antimicrobial magainin peptide affects the mode of peptide-lipid interactions and selective toxicity. Biochemistry 41, 10723–10731.PubMedCrossRefGoogle Scholar
  17. 17.
    Vogt, T. C. B., and Bechinger, B. (1999) The interactions of histidine-containing amphipathic helical peptide antibiotics with lipid bilayers. J. Biol. Chem. 274, 29115–29121.PubMedCrossRefGoogle Scholar
  18. 18.
    Friedrich, C. L., Moyles, D., Beveridge, T. J., and Hancock, R. E. W. (2000) Antibacterial action of structurally diverse cationic peptides on Gram-positive bacteria. Antimicrob. Agents Chemother. 44, 2086–2092.PubMedCrossRefGoogle Scholar
  19. 19.
    Friedrich, C. L., Rozek, A., Patrzykat, A., and Hancock, R. E. W. (2001) Structure and mechanism of action of an indolicidin peptide derivative with improved activity against Gram-positive bacteria. J. Biol. Chem. 276, 24015–24022.PubMedCrossRefGoogle Scholar
  20. 20.
    Sal-Man, N., Oren, Z., and Shai, Y. (2002) Preassembly of membrane-active peptides is an important factor in their selectivity toward target cells. Biochemistry 41, 11921–11930.PubMedCrossRefGoogle Scholar
  21. 21.
    Suzuki, H., Wang, Z.-Y., Yamakoshi, M., Kobayashi, M., and Nozawa, T. (2003) Probing the transmembrane potential of bacterial cells by voltage-sensitive dyes. Anal. Sci. 19, 1239–1242.PubMedCrossRefGoogle Scholar
  22. 22.
    Toyomizu, M., Okamoto, K., Akiba, Y., Nakatsu, T., and Konishi, T. (2002) Anacardic acid-mediated changes in membrane potential and pH gradient across liposomal membranes. Biochim. Biophys. Acta 1558, 54–62.PubMedCrossRefGoogle Scholar
  23. 23.
    Wu, M., Maier, E., Benz, R., and Hancock, R. E. W. (1999) Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38, 7235–7242.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang, L., Dhillon, P., Yan, H., Farmer, S., and Hancock, R. E. W. (2000) Interactions of bacterial cationic peptide antibiotics with outer and cytoplasmic membranes of Pseudomonas aeruginosa. Antimicrob. Agents Chemother.44, 3317–3321.CrossRefGoogle Scholar
  25. 25.
    Zhang, L., Scott, M. G., Yan, H., Mayer, L. D., and Hancock, R. E. W. (2000) Interaction of polyphemusin I and structural analogs with bacterial membranes, lipopolysaccharide, and lipid monolayers. Biochemistry 39, 14504–14514.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhu, W. L., Song, Y. M., Park, Y., Park, K. H., Yang, S.-T., Kim, J. I., Park, I.-S., Hahm, K. S., and Shin, S. Y. (2007) Substitution of the leucine zipper sequence in melittin with peptoid residues affects self-association, cell selectivity, and mode of action. Biochim. Biophys. Acta 1768, 1506–1517.PubMedCrossRefGoogle Scholar
  27. 27.
    Sainz, B., Jr., Rausch, J. M., Gallaher, W. R., Garry, R. F., and Wimley, W. C. (2005) Identification and characterization of the putative fusion peptide of the severe acute respiratory syndrome-associated coronavirus spike protein. J. Virol. 79, 7195–7206.PubMedCrossRefGoogle Scholar
  28. 28.
    Rausch, J. M., and Wimley, W. C. (2001) A high-throughput screen for identifying transmembrane pore-forming peptides. Anal. Biochem. 293, 258–263.PubMedCrossRefGoogle Scholar
  29. 29.
    Waggoner, A. (1976) Optical probes of membrane potential. J. Membr. Biol. 27, 317–334.PubMedCrossRefGoogle Scholar
  30. 30.
    Letellier, L., and Shechter, E. (1979) Cyanine dye as monitor of membrane potentials in Escherichia coli cells and membrane vesicles. Eur. J. Biochem. 102, 441–447.PubMedCrossRefGoogle Scholar
  31. 31.
    Ozkan, P., and Mutharasan, R. (2002) A rapid method for measuring the intracellular pH using BCECF-AM. Biochim. Biophys. Acta 1572, 143–148.PubMedCrossRefGoogle Scholar
  32. 32.
    Casadio, R., Di Bernardo, S., Fariselli, P., and Melandri, B. A. (1995) Characterization of 9-aminoacridine interaction with chromatophore membranes and modelling of the probe response to artificially induced transmembrane ΔpH values. Biochim. Biophys. Acta 1237, 23–30.PubMedCrossRefGoogle Scholar
  33. 33.
    Apell, H.-J., and Bersch, B. (1987) Oxonol VI as an optical indicator for membrane potentials in lipid vesicles. Biochim. Biophys. Acta 903, 480–494.PubMedCrossRefGoogle Scholar
  34. 34.
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2002) Molecular biology of the cell. Garland Science: New York.Google Scholar
  35. 35.
    Noskov, S. Y., and Roux, B. (2006) Ion selectivity in potassium channels. Biophys. Chem. 124, 279–291.PubMedCrossRefGoogle Scholar
  36. 36.
    Seelig, J. (1997) Titration calorimetry of lipid-peptide interactions. Biochim. Biophys. Acta 1331, 103–116.PubMedCrossRefGoogle Scholar
  37. 37.
    Wieprecht, T., Apostolov, O., and Seelig, J. (2000) Binding of the antibacterial peptide magainin 2 amide to small and large unilamellar vesicles. Biophys. Chem. 85, 187–198.PubMedCrossRefGoogle Scholar
  38. 38.
    Wieprecht, T., Beyermann, M., and Seelig, J. (1999) Binding of the antibacterial magainin peptides to electrically neutral membranes: thermodynamics and structure. Biochemistry 38, 10377–10387.PubMedCrossRefGoogle Scholar
  39. 39.
    Wieprecht, T., and Seelig, J. (2002) Isothermal titration calorimetry for studying interactions between peptides and lipid membranes. In Peptide-Lipids Interactions. S. A. Simon and T. J. McInotosh (Eds.), Current Topics in Membranes, Vol. 52, pp. 31–56. USA: Elsevier Science.CrossRefGoogle Scholar
  40. 40.
    Hope, M. J., Bally, M. B., Webb, G., and Cullis, P. R. (1985) Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim. Biophys. Acta 812, 55–65.PubMedCrossRefGoogle Scholar
  41. 41.
    Bartlett, G. R. (1959) Phosphorus assay in column chromatography. J. Biol. Chem. 234, 466–468.PubMedGoogle Scholar
  42. 42.
    Dodge, J. T., and Phillips, G. B. (1967) Composition of phospholipids and of phospholipid fatty acids and aldehydes in human red cells. J. Lipid Res. 8, 667–675.PubMedGoogle Scholar
  43. 43.
    Kruijff, B. D., Killian, J. A., Rietveld, A. G., and Kusters, R. (1997) Phospholipid structure and Escherichia coli membranes. In Lipid Polymorphism and Membrane Properties. R. M. Epand (Ed.), Current Topics in Membranes and Transport, Vol. 44, pp. 477–515. London:Academic Press.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Nathaniel P. Chongsiriwatana
    • 1
  • Annelise E. Barron
    • 2
  1. 1.Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.Department of BioengineeringStanford UniversityStanfordUSA

Personalised recommendations