Advertisement

Determining the Activity of Mucosal Adjuvants

  • Barbara C. BaudnerEmail author
  • Giuseppe Del Giudice
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 626)

Abstract

Mucosal vaccination offers the advantage of blocking pathogens at the portal of entry, improving patient’s compliance, facilitating vaccine delivery, and decreasing the risk of unwanted spread of infectious agents via contaminated syringes.

Recent advances in vaccinology have created an array of vaccine constructs that can be delivered to mucosal surfaces of the respiratory, gastrointestinal, and genitourinary tracts using intranasal, oral, and vaginal routes. Due to the different characteristics of mucosal immune response, as compared with systemic response, mucosal immunization requires particular methods of antigen presentation. Well-tolerated adjuvants that enhance the efficacy of such vaccines will play an important role in mucosal immunization. Among promising mucosal adjuvants, mutants of cholera toxin and the closely related heat-labile enterotoxin (LT) of enterotoxigenic Escherichia coli present powerful tools, augmenting the local and systemic serum antibody response to co-administered antigens.

In this chapter, we describe the formulation and application of vaccines using the genetically modified LTK63 mutant as a prototype of the family of these mucosal adjuvants and the tools to determine its activity in the mouse model.

Key words

Mucosal vaccination mucosal adjuvants LT mutants ELISA antibody response T-cell response ELISPOT 

Notes

Acknowledgment

We are grateful to Markus Hilleringmann for critical reading of the manuscript and Derek O’Hagan for general support.

References

  1. 1.
    Baudner, B. C., Verhoef, J. C., Junginger, H. E., Del Giudice, G. (2004) Mucosal adjuvants and delivery systems for oral and nasal vaccination. Drugs Future 29, 721–732.CrossRefGoogle Scholar
  2. 2.
    McNeela, E. A., Mills, K. H. (2001) Manipulating the immune system: humoral versus cell-mediated immunity. Adv Drug Deliv Rev 51, 43–54.PubMedCrossRefGoogle Scholar
  3. 3.
    Czerkinsky, C., Anjuere, F., McGhee, J. R., George-Chandy, A., Holmgren, J., Kieny, M. P., Fujiyashi, K., Mestecky, J. F., Pierrefite-Carle, V., Rask, C., Sun, J. B. (1999) Mucosal immunity and tolerance: relevance to vaccine development. Immunol Rev 170, 197–222.PubMedCrossRefGoogle Scholar
  4. 4.
    Pierce, N. S., Gowans, J. L. (1975) Cellular kinetics of the intestinal immune response to cholera toxoid in rats. J Exp Med 142, 1550–1563.PubMedCrossRefGoogle Scholar
  5. 5.
    Clements, J. D., Yancy, R. J., Finkelstein, R. A. (1980) Properties of homogeneous heat-labile enterotoxin from Escherichia coli. Infect Immun 29, 91–97.PubMedGoogle Scholar
  6. 6.
    Lycke, N., Holmgren, J. (1986) Strong adjuvant properties of cholera toxin on gut mucosal immune responses to orally presented antigens. Immunology 59, 301–308.PubMedGoogle Scholar
  7. 7.
    Rappuoli, R., Pizza, M. (1991) Structure and evolutionary aspects of ADP-ribosylating toxins, in (Alouf, J., Freer, J., eds.) Sourcebook of Bacterial Protein Toxins. Academic, New York, pp 1–20.Google Scholar
  8. 8.
    Rappuoli, R., Pizza, M., Douce, G., Dougan, G. (1999) A relationship between the structure and function of cholera and Escherichia coli heat labile enterotoxins and their immunological activity at mucosal surfaces. Immunol Today 20, 493–500.PubMedCrossRefGoogle Scholar
  9. 9.
    Magagnoli, C., Manetti, R., Fontana, M. R., Giannelli, V., Giuliani, M. M., Rappuoli, R., Pizza, M. (1996) Mutations in the A subunit affect yield, stability, and protease sensitivity of nontoxic derivatives of heat labile enterotoxin. Infect Immun 64, 5434–5438.PubMedGoogle Scholar
  10. 10.
    Holmgren, J., Lonnroth, I., Svennerholm, L. (1973) Tissue receptor for cholera exotoxin: postulated structure from studies with GM1-ganglioside and related glycolipids. Infect Immun 8, 208–214.PubMedGoogle Scholar
  11. 11.
    Sugii, S. T. (1989) Binding specificities of heat-labile enterotoxins isolated from porcine and human enterotoxigenic Escherichia coli heat-labile toxin and cholera toxin. Can J Microbiol 35, 670–673.PubMedCrossRefGoogle Scholar
  12. 12.
    Pizza, M., Fontana, M. R., Scarlato, V., Rappuoli, R. (2003) Genetic detoxification of bacterial toxins page range. Methods Mol Med 87, 133–151.PubMedGoogle Scholar
  13. 13.
    Giuliani, M. M., Del Giudice, G., Gianelli, V., Dougan, G., Douce, D., Rappuoli, R., Pizza, M. (1998) Mucosal adjuvanticity and immunogenicity of LTR72, a novel mutant of Escherichia coli heat-labile enterotoxin with partial knockout of ADP-ribosyltransferase activity. J Exp Med 187, 1123–1132.PubMedCrossRefGoogle Scholar
  14. 14.
    Partidos, C. D., Pizza, M., Rappuoli, R., Steward, M. W. (1996) The adjuvant effect of a non-toxic mutant heat-labile enterotoxin of Escherichia coli for the induction of measles virus-specific CTL responses after intranasal co-immunization with a synthetic peptide. Immunology 89, 483–487.PubMedCrossRefGoogle Scholar
  15. 15.
    deHaan, L., Feil, I. K., Verweij, W. R., Holtrop M., Hol W. G., Agsteribbe, E., Wilschut, J.. (1998) Mutational analysis of the role of ADP-ribosylation activity and GM1-binding activity in the adjuvant properties of the Escherichia coli heat-labile enterotoxin towards intranasally administered keyhole limpet hemocyanin. Eur J Immunol 28, 1243–1250.CrossRefGoogle Scholar
  16. 16.
    Dickinson, B. L., Clements, J. D. (1995) Dissociation of Escherichia coli heat-labile enterotoxin adjuvanticity from ADP-ribosyltransferase activity. Infect Immun 63, 1617–1623.PubMedGoogle Scholar
  17. 17.
    Ryan, E. J., McNeela, E., Murphy, G. A., Stewart, H., O’Hagan, D., Pizza, M., Rappuoli, R., Mills, K. H. (1999) Mutants of Escherichia coli heat labile toxin act as effective mucosal adjuvants for nasal delivery of an acellular pertussis vaccine: differential effects of the non-toxic AB complex and enzyme activity on Th1 and Th2 cells. Infect Immun 67, 6270–6280.PubMedGoogle Scholar
  18. 18.
    Marchetti, M., Rossi, M., Giannelli, V., Giuliani, M. M., Pizza, M., Censini, S., Covacci, A., Massari, P., Pagliaccia, C., Manetti, R., Telford, J. L., Douce, G., Dougan, G., Rappuoli, R., Ghiara, P. (1998) Protection against Helicobacter pylori infection in mice by intragastric vaccination with H. pylori antigens is achieved using a non-toxic mutant of E. coli heat-labile enterotoxin (LT) as adjuvant. Vaccine 16, 33–37.PubMedCrossRefGoogle Scholar
  19. 19.
    Jakobsen, H., Bjarnarson, S., Del Giudice, G., Moreau, M., Siegrist, C. A., Jonsdottir, I. (2002) Intranasal immunization with pneumococcal conjugate vaccines with LT-K63, a nontoxic mutant of heat-Labile enterotoxin, as adjuvant rapidly induces protective immunity against lethal pneumococcal infections in neonatal mice. Infect Immun 70, 1443–1452.PubMedCrossRefGoogle Scholar
  20. 20.
    Douce, G., Turcotte, C., Cropley, I., Roberts, M., Pizza, M., Domenghini, M., Rappuoli, R., Dougan, G. (1995) Mutants of Escherichia coli heat-labile toxin lacking ADP-ribosyltransferase activity act as nontoxic, mucosal adjuvants. Proc Natl Acad Sci USA 92, 1644–1648.PubMedCrossRefGoogle Scholar
  21. 21.
    Mawas, F., Peyre, M., Beignon, A. S., Frost, L., Del Giudice, G., Rappuoli, R., Muller, S., Sesardic, D., Partidos, C. D. (2004) Successful induction of protective antibody responses against Haemophilus influenzae type b and diphtheria following transcutaneous immunization with glyconjugate polyribosyl ribitol phosphate–cross-reacting material197 vaccine. J Infect Dis 190, 1177–1182.PubMedCrossRefGoogle Scholar
  22. 22.
    Del Giudice, G., Covacci, A., Telford, J. L., Montecucco, C., Rappuoli, R. (2001) The design of vaccines against Helicobacter pylori and their development. Ann Rev Immunol 19, 523–563.CrossRefGoogle Scholar
  23. 23.
    Dietrich, J., Andersen, C., Rappuoli, R., Doherty, T. M., Jensen, C. G., Andersen, P. (2006) Mucosal administration of Ag85B-ESAT-6 protects against infection with Mycobacterium tuberculosis and boosts prior bacillus Calmette-Guerin immunity. J Immunol 177, 6353–6360.PubMedGoogle Scholar
  24. 24.
    Baudner, B., Moranti, M., Giuliani, M. M., Verhoef, J. C., Junginger, H. E., Costantino, P., Rappuoli, R., Del Giudice, G. (2004) Modulation of immune response to group C meningococcal coniugate vaccine given intranasally to mice together with the LTK63 mucosal adjuvant and the trimethyl chirosan delivery system. J Infect Dis 189, 828–832.PubMedCrossRefGoogle Scholar
  25. 25.
    Bjarnarson, S. P., Jakobsen, H., Del Giudice, G., Trannoy, E., Siegrist, C. A., Jonsdottir, I. (2005) The advantage of mucosal immunization for polysaccharide-specific memory responses in early life. Eur J Immunol 35, 1037–1045.PubMedCrossRefGoogle Scholar
  26. 26.
    Partidos, C. D., Salani, B. F., Pizza, M., Rappuoli, R. (1999) Heat-labile enterotoxin of Escherichia coli and its site-directed mutant LTK63 enhance the proliferative and cytotoxic T-cell responses to intranasally co-immunized synthetic peptides. Immunol Lett 67, 209–216.PubMedCrossRefGoogle Scholar
  27. 27.
    Neidleman, J. A., Vajdy, M., Ugozzoli, M., Ott, G., O’Hagan, D. (2000) Genetically detoxified mutants of heat-labile enterotoxin from Escherichia coli are effective adjuvants for induction of cytotoxic T-cell responses against HIV-1 gag-p55. Immunology 101, 154–160.PubMedCrossRefGoogle Scholar
  28. 28.
    Simmons, C. P., Mastroeni, P., Fowler, R., Ghaem-maghami, M., Lycke, N., Pizza, M., Rappuoli, R., Dougan, G. (1999) MHC class I-restricted cytotoxic lymphocyte responses induced by enterotoxin-based mucosal adjuvants. J Immunol 163, 6502–6510.PubMedGoogle Scholar
  29. 29.
    Simmons, C. P., Hussell, T., Sparer, T., Walzl, G., Openshaw, P., Dougan, G. (2001) Mucosal delivery of a respiratory syncytial virus CTL peptide with enterotoxin-based adjuvants elicits protective, immunopathogenic, and immunoregulatory antiviral CD8+ T cell responses. J Immunol 166, 1106–1113.PubMedGoogle Scholar
  30. 30.
    Ugozzoli, M., O’Hagan, D. T., Ott, G. S. (1998) Intranasal immunization of mice with herpes simplex virus type 2 recombinant gD2: the effect of adjuvants on mucosal and serum antibody responses. Immunology 93, 563–571.PubMedCrossRefGoogle Scholar
  31. 31.
    Tempesta, M., Camero, M., Bellacicco, A. L., Tarsitano, E., Lo russo, A., Martella, V., Decaro, N., Del Giudice, G., Cassone, A., Quaranta, A., Buonavoglia, C. (2007) Caprine herpesvirus 1 vaccine with the LTK63 mutant as a mucosal adjuvant induces strong protection against genital infection in goats. Vaccine 25, 7927–7930.PubMedCrossRefGoogle Scholar
  32. 32.
    Singh, M., Briones, M., O’Hagan, D. T. (2001) A novel bioadhesive intranasal delivery system for inactivated influenza vaccines. J Control Release 70, 267–276.PubMedCrossRefGoogle Scholar
  33. 33.
    Barackman, J. D., Ott, G., Pine, S., O‘Hagan, D. T. (2001) Oral administration of influenza vaccine in combination with the adjuvants LT-K63 and LT-R72 induces potent immune responses comparable to or stronger than traditional intramuscular immunization. Clin Diagn Lab Immunol 8, 652–657.PubMedGoogle Scholar
  34. 34.
    Bonenfant, C., Dimier-Poisson, I., Velge-Roussel, F., Buzoni-Gatel, D., Del Giudice, G., Rappuoli, R., Bout, D. (Intranasal immunization with SAG1 and nontoxic mutant heat-labile enterotoxins protects mice against Toxoplasma gondii. Infect Immun 69, 1605–1612Google Scholar
  35. 35.
    Romero, J. F., Ciabattini, A., Guillaume, P., Frank, G., Ruggiero, P., Pettini, E., Del Giudice, G., Medaglioni, D., Corradin, G. (2009) Intranasal administration of the synthetic polypeptide from the C-terminus of the circumsporozoite protein of Plasmodium berghei with the modified heat-labile toxin of Escherichia coli (LTK63) induces a complete protection against malaria challenge. Vaccine 27, 1266–1271.Google Scholar
  36. 36.
    Kende, M., Tan, X., Wlazlowski, C., Williams, R., Lindsey, C., Del Giudice, G. (2007) Enhancement of intranasal vaccination with recombinant chain A ricin vaccine (rRV) in mice by the mucosal adjuvants LTK63 and LTR72. Vaccine 25, 3219–3227.PubMedCrossRefGoogle Scholar
  37. 37.
    Stephenson, I., Zambon, M. C., Rudin, A., Colegate, A., Podda, A., Bugarini, R., Del Giudice, G., Minutello, A., Bonnington, S., Holmgren, J., Mills, K. H., Nicholson, K. G. (2006) Phase I evaluation of intranasal trivalent inactivated influenza vaccine with nontoxigenic Escherichia coli enterotoxin and novel biovector as mucosal adjuvants, using adult volunteers. J Virol 80, 4962–4970.PubMedCrossRefGoogle Scholar
  38. 38.
    Zoller, M. J., Smith, M. (1982) Oligonucleotide-directed mutagenesis using M13-derived vectors: an efficient and general procedure for the production of point mutations in any fragment of DNA. Nucl Acid Res 10, 6487–6500.CrossRefGoogle Scholar
  39. 39.
    Sambrook, J., Fritsch, E. F., Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual.. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  40. 40.
    Del Giudice, G., Pizza, M., Rappuoli, R. (1999) Mucosal delivery of vaccines. Methods 19, 148–155.PubMedCrossRefGoogle Scholar
  41. 41.
    Donta, S. T., Moon, H. W., Whipp, S. C. (1973) Detection and use of heat-labile Escherichia coli enterotoxin with the use of adrenal cells in tissue culture. Science 183, 334–335.CrossRefGoogle Scholar
  42. 42.
    Lai, C., Cancedda, F., Duffy, L. K. (1981) ADP-ribosyl transferase activity of cholera toxin polypeptide A1, and the effect of limited trypsinolysis. Biochem Biophys Res Commun 102, 1021–1027.PubMedCrossRefGoogle Scholar
  43. 43.
    De, S. N. (1959) Enterotoxicity of Bacteria-free Culture-filtrate of Vibrio cholerae. Nature 183, 1533–1534.PubMedCrossRefGoogle Scholar
  44. 44.
    Vajdy, M., Singh, M. (2005) The role of adjuvants in the development of mucosal vaccines. Expert Opin Biol Ther 5, 953–965.PubMedCrossRefGoogle Scholar
  45. 45.
    Estcourt, M. J., Letourneau, S., McMichael, A. J., Hanke, T. (2005) Vaccine route, dose and type of delivery vector determine patterns of primary CD8+ T cell responses. Eur J Immunol 35, 2532–2540.PubMedCrossRefGoogle Scholar
  46. 46.
    Leder, K., Weller, P. F., Wilson, M. E. (2001) Travel vaccines and elderly persons: review of vaccines available in the United States. Clin Infect Dis 33, 1553–1566.PubMedCrossRefGoogle Scholar
  47. 47.
    Shohat, T., Green, M. S., Nakar, O., Ballin, A., Duvdevani, P., Cohen, A., Shohat, M. (2000) Gender differences in the reactogenicity of measles- mumps-rubella vaccine. Isr Med Assoc J 2, 192–195.PubMedGoogle Scholar
  48. 48.
    Albers, R., Antoine, J. M., Bourdet-Sicard, R., Calder, P. C., Gleeson, M., Lesourd, B., Samartín, S., Sanderson, I. R., Van Loo, J., Vas Dias, F. W., Watzl, B. (2005) Markers to measure immunomodulation in human nutrition intervention studies. Br J Nutr 94, 452–481.PubMedCrossRefGoogle Scholar
  49. 49.
    Kaminski, R. W., VanCott, T. C. (1999) Collection and processing of mucosal secretions from mice. Methods Mol Med 17, 329–339.PubMedGoogle Scholar
  50. 50.
    van Ginkel, F. W., VanCott, J. L., Kaminski, R., VanCott, T. C. (1999) Measurement of HIV-1 specific and total antibody secreting cells by ELISPOT. Methods Mol Med 17, 283–292.PubMedGoogle Scholar
  51. 51.
    Finney, D. F. (1978) Parallel line assays. Statistical Methods in Biological Assays, 3rd edn., pp 69–104.Google Scholar
  52. 52.
    Kalkanidis, M., Pietersz, G. A., Xiang, S. D., Mottram, P. L., Crimeen-Irwin, B., Ardipradja, K., Plebanski, M. (2006) Methods for nano-particle based vaccine formulation and evaluation of their immunogenicity. Methods 40, 20–29.PubMedCrossRefGoogle Scholar
  53. 53.
    Cox, J. H., Ferrari, G., Janetzki, S. (2006) Measurement of cytokine release at the single cell level using the ELISPOT assay. Methods 38, 274–282.PubMedCrossRefGoogle Scholar
  54. 54.
    Letsch, A., Scheibenbogen, C. (2003) Quantification and characterization of specific T-cells by antigen-specific cytokine production using ELISPOT assay or intracellular cytokine staining. Methods 31, 143–149.PubMedCrossRefGoogle Scholar
  55. 55.
    Anthony, D. D., Lehmann, P. V. (2003) T-cell epitope mapping using the ELISPOT approach. Methods 29, 260–269.PubMedCrossRefGoogle Scholar
  56. 56.
    Ghiara, P., Rossi, M., Marchetti, M., Di Tommaso, A., Vindigni, C., Ciampolini, F., Covacci, A., Telford, J. L., De Magistris, M. T., Pizza, M., Rappuoli, R., Del Giudice, G. (1997) Therapeutic intragastric vaccination against Helicobacter pylori in mice eradicates an otherwise chronic infection and confers protection against reinfection. Infect Immun 65, 4996–5002.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Novartis Vaccines and DiagnosticsSienaItaly

Personalised recommendations