Peptidomics pp 227-246 | Cite as

Quantitative Neuroproteomics of the Synapse

  • Dinah Lee Ramos-Ortolaza
  • Ittai Bushlin
  • Noura Abul-Husn
  • Suresh P. Annangudi
  • Jonathan Sweedler
  • Lakshmi A. Devi
Part of the Methods in Molecular Biology book series (MIMB, volume 615)


An emerging way to study neuropsychiatric or neurodegenerative diseases is by performing proteomic analyses of brain tissues. Here, we describe methods used to isolate and identify the proteins associated with a sample of interest, such as the synapse, as well as to compare the levels of proteins in the sample under different conditions. These techniques, involving subcellular fractionation and modern quantitative proteomics using isotopic labels, can be used to understand the organization of neuronal compartments and the regulation of synaptic function under various conditions.

Key words

Neuroproteomics subcellular fractionation presynaptic terminal mass spectrometry quantitative proteomics differential isotopic labelling 



This work is partially supported by the National Institute on Drug Abuse through Awards No. DA018310 and DA017940 to JVS.


  1. 1.
    Kim, S.I., Voshol, H., Oostrum, J.V., Hastings, T.R., Cascio, M., and Glucksman, M.J. (2004) Neuroproteomics: An expression profiling of the brain’s proteomes in health and disease. Neurochem. Res. 29, 1317–1331.PubMedCrossRefGoogle Scholar
  2. 2.
    Abul-Husn, N.S. and Devi, L.A. (2006) Neuroproteomics of the synapse and drug addiction. J. Pharmacol. Exp. Ther. 318, 461–468.PubMedCrossRefGoogle Scholar
  3. 3.
    Schrimpf, S.P., Meskenaite, V., Brunner, E., Rutishauser, D., Walther, P., Eng, J., Aebersold, R., and Sonderegger, P. (2005) Proteomic analysis of synaptosomes using isotope-coded affinity tags and mass spectrometry. Proteomics 5, 2531–2541.PubMedCrossRefGoogle Scholar
  4. 4.
    Phillips, G.R., Florens, L., Tanaka, H., Khaing, Z.Z., Yates, J.R., 3rd, and Colman, D.R. (2005) Proteomic comparison of two fractions derived from the transsynaptic scaffold. J. Neurosci. 81, 762–775.CrossRefGoogle Scholar
  5. 5.
    Morón, J.A., Abul-Husn, N.S., Rozenfeld, R., Dolios, G., Wang, R., and Devi, L.A. (2007) Morphine administration alters the profile of hippocampal postsynaptic density-associated proteins: a proteomics study focusing on endocytic proteins. Mol. Cell Proteomics 6, 29–42.PubMedGoogle Scholar
  6. 6.
    Paxinos, G. and Watson, C. (1986) The rat brain in stereotaxic coordinates. Academic Press, San Diego.Google Scholar
  7. 7.
    Phillips, G.R., Huang, J.K., Wang, Y., Tanaka, H., Shapiro, L., Zhang, W., Shan, W.S., Arndt, K., Frank, M., Gordon, R.E., Gawinowicz, M.A., Zhao, Y., and Colman, D.R. (2001) The presynaptic particle web: ultrastructure, composition, dissolution, and reconstitution. Neuron 32, 63–77.PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang, R., Sioma, C.S., Wang, S., and Regnier, F.E. (2001) Fractionation of isotopically labeled peptides in quantitative proteomics. Anal. Chem. 73, 5142–5149.PubMedCrossRefGoogle Scholar
  9. 9.
    Ong, S.E. and Mann, M. (2005) Mass spectrometry-based proteomics turns quantitative. Nat. Chem. Biol. 1, 252–262.PubMedCrossRefGoogle Scholar
  10. 10.
    Che, F.Y., Lim, J., Pan, H., Biswas, R., and Fricker, L.D. (2005) Quantitative neuropeptidomics of microwave-irradiated mouse brain and pituitary. Mol. Cell. Proteomics 4, 1391–1405.PubMedCrossRefGoogle Scholar
  11. 11.
    Gutstein, H.B., Morris, J.S., Annangudi, S.P., and Sweedler, J.V. (2008) Microproteomics: analysis of protein diversity in small samples. Mass Spectrom. Rev. 27, 316–330.PubMedCrossRefGoogle Scholar
  12. 12.
    Panchaud, A., Hansson, J., Affolter, M., Bel Rhlid, R., Piu, S., Moreillon, P., and Kussmann, M. (2008) ANIBAL, stable isotope-based quantitative proteomics by aniline and benzoic acid labeling of amino and carboxylic groups. Mol. Cell. Proteomics 7, 800–812.PubMedGoogle Scholar
  13. 13.
    Ranish, J.A., Yi, E.C., Leslie, D.M., Purvine, S.O., Goodlett, D.R., Eng, J., and Aebersold, R. (2003) The study of macromolecular complexes by quantitative proteomics. Nat. Genet. 33, 349.PubMedCrossRefGoogle Scholar
  14. 14.
    Aebersold, R. and Mann, M. (2003) Mass spectrometry-based proteomics. Nature 422, 198–207.PubMedCrossRefGoogle Scholar
  15. 15.
    Romanova, E.V., Annangudi, S.P., and Sweedler, J.V. (2008) Mass Spectrometry of Proteins, In The New Encyclopedia of Neuroscience. (Squire, L., ed.), Elsevier Science, Amsterdam, ((in press)).Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Dinah Lee Ramos-Ortolaza
    • 1
  • Ittai Bushlin
    • 1
  • Noura Abul-Husn
    • 1
  • Suresh P. Annangudi
    • 2
  • Jonathan Sweedler
    • 2
  • Lakshmi A. Devi
    • 1
  1. 1.Department of Pharmacology and Systems TherapeuticsMount Sinai School of MedicineNew YorkUSA
  2. 2.Department of Chemistry and the Beckman InstituteUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations