Intraparenchymal Delivery and Its Discontents

  • Raghu Raghavan
Part of the Neuromethods book series (NM, volume 45)


In the treatment of central nervous system diseases, therapeutic particles need to breach the blood–brain barrier (BBB) to reach their intended target, and it has long been known that this is a difficult barrier to breach. The barrier is both passive with tight junctions hindering passage of even rather small molecules, as well as active with transporters that can pump select molecules back into the bloodstream. The diseases include both those where this barrier has been compromised such as brain tumors, hemorrhagic stroke, and neurotrauma; as well as neurodegenerative disorders where the compromise is substantially less and often unnoticeable. In addition to the pharmaceutical solution which involves design of small molecules that may be administered orally or at least systemically, there is also a compelling need at present to design devices for direct delivery of therapeutics into the central nervous system. Such delivery methods are unpopular because of their intrusiveness; however, the lack of success of the systemic route in the treatment of many of the most severe brain diseases has established a need for such devices, and the success and popularity of deep brain stimulation (DBS) has lowered the psychological barrier to these. Many clinical trials are under way which demand direct delivery of therapeutics to the brain. Such therapeutics range from small molecules, large proteins, nanoparticles, and viral carriers for gene therapies, to cells. This chapter is a review of intraparenchymal delivery of such therapies for brain diseases and of the devices used for such purposes.

Key words

Intracerebral drug delivery convection-enhanced delivery infusion brain intraparenchymal catheters catheters 



The research described in this paper was supported in part by the Kinetics Foundation. Most of the figures have been obtained during collaborative research with a number of collaborators. These collaborators have been mentioned in the figure captions and I owe them a debt of gratitude in permitting use of the figures in this chapter. The title of course is borrowed from a well-known source (78).


  1. 1.
    W. Pardridge. This is the adjective used by William Pardridge of the University of California, Los Angeles to describe intraparenchymal infusions.Google Scholar
  2. 2.
    R. Dermietzel (Ed.) Blood-Brain Barriers: From Ontogeny to Artificial Interfaces. John Wiley and Sons, New York, 2006. In two volumes.Google Scholar
  3. 3.
    W. M. Pardridge. The blood-brain barrier: bottleneck in brain drug development. NeuroRx: The Journal of the American Society for Experimental Neurotherapeutics, 2:3–14, 2005.Google Scholar
  4. 4.
    J. F. Deeken and W. Loscher. The blood-brain barrier and cancer: transporters, treatment and Trojan Horses. Clinical Cancer Research, 13:1663–1674, 2007.CrossRefPubMedGoogle Scholar
  5. 5.
    D. R. Groothuis. The blood-brain and blood-tumor barriers: a review of strategies for increasing drug delivery. Neuro-Oncology, 2:45–59, 2000.PubMedGoogle Scholar
  6. 6.
    K. Hynynen, N. McDannold, N. Sheikov, F. Jolesz, and N. Vikhodtseva. Local and reversible blood-brain barrier disruption by non-invasive focused ultrasound at frequencies suitable for trans-skull sonications. NeuroImage, 24:12–20, 2005.CrossRefPubMedGoogle Scholar
  7. 7.
    J. J. Choi, M. Pernot, S. A. Small, and E. E. Konofagou. Non-invasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice. Ultrasound in Medicine and Biology, 33:95–104, 2007.CrossRefPubMedGoogle Scholar
  8. 8.
    J. J. Choi, M. Pernot, T. R. Brown, S. A. Small, and E. E. Konofagou. Spatiotemporal analysis of molecular delivery through the blood-brain barrier using focused ultrasound. Physics in Medicine and Biology, 52:5509–5530, 2007.CrossRefPubMedGoogle Scholar
  9. 9.
    P. Kumar, H. Wu, J. I. McBride, K. eun Jum, M. H. Kim, B. L. Davidson, S. K. Lee, P. Shankar, and N. Manjunath. Transvascular delivery of small interfering RNA to the central nervous systems. Nature, 448:39–43, 2007.CrossRefPubMedGoogle Scholar
  10. 10.
    M. Hammarlund-Udenaes, M. Friden, S. Syvanen, and A. Gupta. On the rate and extent of drug delivery to the brain. Pharmaceutical Research, 25:1737–1750, 2008.CrossRefPubMedGoogle Scholar
  11. 11.
    X. Liu, C. Chen, and B. J. Smith. Progress in brain penetration evaluation in drug discovery and development. Journal of Pharmacology and Experimental Therapeutics, 325:349–356, 2008.CrossRefPubMedGoogle Scholar
  12. 12.
    J. Burns and D. F. Weaver. A mathematical model for prediction of drug molecule diffusion across the blood brain barrier. Canadian Journal of Neurological Sciences, 31:520–527, 2004.PubMedGoogle Scholar
  13. 13.
    R. Cecchelli, V. Berezowski, S. Lundquist, M. Culot, M. Renftel, M. P. Dehouck, and L. Fenart. Modelling of the blood-brain barrier in drug discovery and development. Nature Reviews Drug Discovery, 6:650–661, 2007.CrossRefPubMedGoogle Scholar
  14. 14.
    K. Rose, L. H. Hall, M. Hall, and L. B. Kier. Modeling blood-brain barrier partitioning using topological structure descriptors. MDL Information Systems White Paper, 2003.Google Scholar
  15. 15.
    L. Rosso, C. S. Brock, J. M. Gallo, A. Saleem, P. M. Price, F. E. Turkheimer, and E. O. Aboagye. A new model for prediction of drug distribution in tumor and normal tissues: pharmacokinetics of Temozolomide in glioma patients. Cancer Research, 69:120–127, 2009.CrossRefPubMedGoogle Scholar
  16. 16.
    P. F. Morrison, D. W. Laske, H. Bobo, E. H. Oldfield, and R. L. Dedrick. High flow microinfusion: tissue penetration and pharmacodynamics. American Journal of Physiology, 266:R292–R305, 1994.PubMedGoogle Scholar
  17. 17.
    R. R. Lonser, N. Gogate, J. D. Wood, P. F. Morrison, and E. H. Oldfield. Direct convective delivery of macromolecules to the peripheral nerves. Journal of Neurosurgery, 89:610–615, 1998.CrossRefPubMedGoogle Scholar
  18. 18.
    R. R. Lonser, R. J. Weil, P. F. Morrison, L. S. Governale, and E. H. Oldfield. Direct convective delivery of macromolecules to the spinal cord. Journal of Neurosurgery, 89:616–622, 1998.CrossRefPubMedGoogle Scholar
  19. 19.
    M. Y. Chen, R. R. Lonser, P. F. Morrison, L. S. Governale, and E. H. Oldfield. Variables affecting convection-enhanced delivery in the striatum: a systematic examination of rate of infusion, cannula size, infusate concentration, and tissue-cannula sealing time. Journal of Neurosurgery, 90:315–320, 1999.CrossRefPubMedGoogle Scholar
  20. 20.
    R. R. Lonser, S. Walbridge, K. Garmestani, J. A. Butman, H. A. Walters, A. O. Vortmeyer, M. W. Brechbiel, P. F. Morrison, and E. H. Oldfield. Successful and safe perfusion of the primate brainstem with a macromolecule: in vivo magnetic resonance imaging of macromolecular distribution during infusion. Journal of Neurosurgery, 97:905–913, 2002.CrossRefPubMedGoogle Scholar
  21. 21.
    D. Croteau, S. Walbridge, P. F. Morrison, J. A. Butman, A. O. Vormeyer, D. Johnson, E. H. Oldfield, and R. R. Lonser. Real time, in vivo imaging of convective distribution of a low molecular weight tracer. Journal of Neurosurgery, 102:90–107, 2005.CrossRefPubMedGoogle Scholar
  22. 22.
    R. H. Bobo, D. W. Laske, A. Akbasak, P. F. Morrison, R. L. Dedrick, and E. H. Oldfield. Convection-enhanced delivery of macromolecules in the brain. Proceedings of the National Academy of Sciences U. S. A., 91:2076–2080, 1994.CrossRefGoogle Scholar
  23. 23.
    E. R. Kandel, J. Schwartz, and T. Jessell (Eds.). Principles of Neural Science, 4th edition. McGraw Hill, New York, 2000.Google Scholar
  24. 24.
    R. G. Thorne and C. Nicholson. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proceedings of the National Academy of Sciences, 103:5567–5572, 2006.CrossRefGoogle Scholar
  25. 25.
    H. Davson and M. B. Segal (Eds.). Physiology of the Cerebrospinal Fluids and Blood-brain Barriers. CRC Press, Boca Raton, FL 1996.Google Scholar
  26. 26.
    N. J. Abbott. Dynamics of CNS barriers: evolution, differentiation, and modulation. Cellular and Molecular Neurobiology, 25:5–23, 2005.CrossRefPubMedGoogle Scholar
  27. 27.
    R. O. Weller. Pathology of cerebrospinal fluid and interstitial fluid of the CNS: significance for Alzheimer disease, prion disorders and multiple sclerosis. Journal of Neuropathology and Experimental Neurology, 57:885–894, 1998.CrossRefPubMedGoogle Scholar
  28. 28.
    M. E. Jonhagen, A. Nordberg, K. Amberia, L. Backman, T. Ebendal, B. Meyerson, L. Olson, A. Seigar, M. Shigeta, E. Theodorsson, M. Viitanen, B. Winblad, and L. O. Wahlund. Intracerebroventricular infusion of nerve growth factor in three patients with Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 9:246–257, 1998.CrossRefGoogle Scholar
  29. 29.
    C. E. Johanson, J. A. Duncan, E. G. Stopa, and A. Baird. Enhanced prospects for drug delivery and brain targeting by the Choroid Plexus – CSF route. Pharmaceutical Research, 22:1011–1037, 2005.CrossRefPubMedGoogle Scholar
  30. 30.
    K. Sawamoto, H. Wichterle, O. Gonzalez-Perez, J. A. Cholfin, M. Yamada, N. Spassky, N. S. Murcia, J. M. Garcia-Verdugo, O. Marin, and J. L. Rubenstein et al. New neurons follow the flow of cerebrospinal fluid in the adult brain. Science, 311:629–632, 2006.CrossRefPubMedGoogle Scholar
  31. 31.
    G. Craciun, A. Brown, and A. Friedman. A dynamical system model of neurofilament transport in axons. Journal of Theoretical Biology, 237:316–322, 2005.CrossRefPubMedGoogle Scholar
  32. 32.
    A. Friedman and G. Craciun. A model of intracellular transport of particles in an axon. Journal of Mathematical Biology, 51:217–246, 2005.CrossRefPubMedGoogle Scholar
  33. 33.
    L. W. Bruch, E. Zaremba, and M. W. Cole. Physical Adsorption: Forces and Phenomena. Dover Mineola, NY, 2007 edition, 1997.Google Scholar
  34. 34.
    U. Hornung (Ed.). Homogenization and Porous Media. Springer, New York, 1997.Google Scholar
  35. 35.
    H. Wang. Linear Theory of Poroelasticity. Princeton University Press, Princeton, NJ, 2000.Google Scholar
  36. 36.
    O. Coussy. Mechanics of Porous Continua. John Wiley and Sons, New York, 2004.Google Scholar
  37. 37.
    O. Coussy. Poromechanics. John Wiley and Sons, New York, 2004.Google Scholar
  38. 38.
    D. L. Johnson, J. Koplik, and R. Dashen. Theory of dynamic permeability and tortuosity in fluid-saturated porous media. Journal of Fluid Mechanics, 176:379–402, 1987.CrossRefGoogle Scholar
  39. 39.
    D. L. Johnson. Elastodynamics of Gels. Journal of Chemical Physics, 77:1531–1539, 1982.CrossRefGoogle Scholar
  40. 40.
    P. F. Morrison, M. Y. Chen, R. S. Chadwick, R. R. Lonser, and E. H. Oldfield. Focal delivery during direct infusion to brain: role of flow rate, catheter diameter, and tissue mechanics. American Journal of Physiology, 277:R1218–R1229, 1999.PubMedGoogle Scholar
  41. 41.
    X. Y. Zhang, J. Luck, M. W. Dewhirst, and F. Yuan. Interstitial hydraulic conductivity in a fibrosarcoma. American Journal of Physiology Heart and Circulatory Physiology, 279:H2726–H2734, 2000.PubMedGoogle Scholar
  42. 42.
    J. Bear. Dynamics of Fluids in Porous Media. Dover, New York 1988.Google Scholar
  43. 43.
    Y. Mardor, O. Rahav, Y. Zauberman, Z. Lidar, A. Ocherashvilli, D. Daniels, Y. Roth, S. E. Maier, and Z. Ram. Convection-enhanced drug delivery: increased efficacy and magnetic resonance image monitoring. Cancer Research, 65:6858–6863, 2005.CrossRefPubMedGoogle Scholar
  44. 44.
    B. Perlstein, Z. Ram, D. Daniels, A. Ocherashvilli, Y. Roth, S. Margel, and Y. Mardor. Convection enhanced delivery of maghemite nanoparticles: increased efficacy and MRI monitoring. Neuro-Oncology, 10:153–161, 2008.CrossRefPubMedGoogle Scholar
  45. 45.
    X. Fan, N. Phan-Thien, N. T. Yong, X. Wu, and D. Xu. Microchannel flow of a macromolecular suspension. Physics of Fluids, 15:11–21, 2003.CrossRefGoogle Scholar
  46. 46.
    G. Powathil, M. Kohandel, S. Sivaloganathan, A. Oza, and M. Milosevic. Mathematical modeling of brain tumor: effects of surgery, radiotherapy and chemotherapy. Physics in Medicine and Biology, 52:3291–3306, 2007.CrossRefPubMedGoogle Scholar
  47. 47.
    S. Sivaloganathan, M. Stastna, G. Tenti, and J. M. Drake. A viscoelastic approach to the modelling of hydrocephalus. Applied Mathematics and Computation, 163:1097–1107, 2005.CrossRefGoogle Scholar
  48. 48.
    S. Sivaloganathan, M. Stastna, G. Tenti, and J. M. Drake. A viscoelastic model of the brain parenchyma with pulsatile ventricular pressure. Applied Mathematics and Computation, 165:687–698, 2005.CrossRefGoogle Scholar
  49. 49.
    S. Sivaloganathan, M. Stastna, G. Tenti, and J. M. Drake. Biomechanics of the brain: A theoretical and numerical study of Biot’s equations of consolidation theory with deformation-dependent permeability. International Journal of Non-Linear Mechanics, 40:1149–1159, 2005.CrossRefGoogle Scholar
  50. 50.
    J. H. Smith and J. A. C. Humphrey. Interstitial transport and transvascular fluid exchange during infusion into brain and brain tissue. Journal of Microvascular Research, 2:871–882, 2006.Google Scholar
  51. 51.
    M. Stastna, G. Tenti, J. M. Drake, and S. Sivaloganathan. Brain biomechanics: an exact solution and asymptotics of slow variations, for the time dependent equations of consolidation theory. Dynamics of Continuous, Discrete and Impulsive Systems, 5:415–425, 1999.Google Scholar
  52. 52.
    G. Tenti, J. M. Drake, and S. Sivaloganathan. Mathematical pressure-volume models of the cerebrospinal fluid. Applied Mathematics and Computation, 94:243–266, 1998.CrossRefGoogle Scholar
  53. 53.
    G. Tenti and K. Rohlf. The role of the Womersley number in pulsatile blood flow: a theoretical study of the Casson model. Journal of Biomechanics, 34:141–148, 2001.CrossRefPubMedGoogle Scholar
  54. 54.
    G. Tenti, S. Sivaloganathan, and J. M. Drake. The synchrony of arterial and CSF pulsations is not due to resonance. Pediatric Neurosurgery, 37:221–222, 2002.CrossRefPubMedGoogle Scholar
  55. 55.
    R. K. Jain and L. E. Gerlowski. Extravascular transport in normal and tumor tissues. Critical Review of Oncology and Hematology, 5:115–170, 1986.CrossRefGoogle Scholar
  56. 56.
    R. K. Jain and T. Baxter. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of interstitial pressure. Cancer Research, 48:7022–7032, 1988.PubMedGoogle Scholar
  57. 57.
    R. K. Jain. Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Reviews, 9:253–266, 1990.CrossRefPubMedGoogle Scholar
  58. 58.
    M. T. Krauze, R. Saito, C. Noble, M. Tamas, J. Bringas, J. W. Park, M. S. Berger, and K. Bankiewicz. Reflux-free cannula for convection-enhanced high-speed delivery of therapeutic agents. Journal of Neurosurgery, 103:923–929, 2007.CrossRefGoogle Scholar
  59. 59.
    M. Solar, C. Ross, R. Raghavan, and M. Brady. Device and method for delivering therapeutic agents to an area of the body. United States Patent Application 12/152,280, filed May 13, 2008.Google Scholar
  60. 60.
    J. H. Sampson, M. L. Brady, N. A. Petry, D. Croteau, A. H. Friedman, H. S. Friedman, T. Wong, D. D. Bigner, I. Pastan, and C. Pedain. Intracerebral infusate distribution by convection-enhanced delivery in humans with malignant gliomas: descriptive effects of target anatomy and catheter positioning. Neurosurgery Supplement, 1:89–99, 2007.Google Scholar
  61. 61.
    J. F. Dempsey, J. A. Williams, and J. B. Stubbs et al. Dosimetric properties of a novel brachytherapy balloon applicator for the treatment of malignant brain tumor resection cavity margins. International Journal of Radiation Oncology and Biological Physics, 42:421–429, 1998.CrossRefGoogle Scholar
  62. 62.
    J. J. Olson, Z. Zhang, D. Dillehay, and J. Stubbs. Assessment of a balloon-tipped catheter modified for intracerebral convection-enhanced delivery. Journal of Neurooncology, 89:159–168, 2008.CrossRefGoogle Scholar
  63. 63.
    J. Lighthill. Acoustic Streaming. Journal of Sound and Vibration, 61:391–418, 1978.CrossRefGoogle Scholar
  64. 64.
    G. Heart, G. Tolkowsky, A. Brisken, and J. Karratt. Implantable ultrasound systems and methods for enhancing localized delivery of therapeutic substances. U. S. Patent Application 2004/0267234, 2004.Google Scholar
  65. 65.
    R. Raghavan. Device, methods, and control of sonic guidance of molecules and other materials using time-reversal acoustics. United States Patent Application 12/319, 311, 2009.Google Scholar
  66. 66.
    P. Poesio, G. Ooms, A. Schraven, and F. van der Bas. Theoretical and experimental investigation of acoustic streaming in a porous material. Physical Review E, 66:016309-1–016309-9, 2002.Google Scholar
  67. 67.
    Y. Liu, S. Paliwal, K. Bankiewicz, J. Bringas, G. Heart, S. Mitragotri, and M. Prausnitz. Ultrasoundassisted drug delivery in the brain. preprint, 2009.Google Scholar
  68. 68.
    G. Lewis and W. Olbricht. Acoustic targeted drug delivery in neurological tissue. BMES Annual Conference, 2007.Google Scholar
  69. 69.
    J. R. Levick. Flow through interstitium and other fibrous matrices. Quarterly Journal of Experimental Physiology, 72:409–438, 1987.PubMedGoogle Scholar
  70. 70.
    M. A. Swartz and M. E Fleury. Interstitial flow and its effects in soft tissues. Annual Reviews of Biomedical Engineering, 9:229–256, 2007.CrossRefGoogle Scholar
  71. 71.
    S. Ramanujan, A. Pluen, T. D. McKee, E. B. Brown, Y. Boucher, and R. K. Jain. Diffusion and convection in collagen gels: implications for transport in the tumor interstitium. Biophysical Journal, 83:1650–1660, 2002.CrossRefPubMedGoogle Scholar
  72. 72.
    T. Stylianopoulos, A. Yeckel, J. J. Derby, X. J. Luo, M. S. Shephard, E. A. Sander, and V. H. Barocas. Permeability calculations in three-dimensional isotropic and oriented fiber networks. Physics of Fluids, 20:123601–1-123601-10, 2008.Google Scholar
  73. 73.
    N. Pernodet, M. Maloum, and B. Tinland. Pore size of agarose gels by atomic force microscopy. Electrophoresis, 18:55–58, 1997.CrossRefPubMedGoogle Scholar
  74. 74.
    M. M. Chui, R. J. Phillips, and M. J. McCarthy. Measurement of the porous microstructure of hydrogels by nuclear magnetic resonance. Journal of Colloid and Interface Science, 174:336–344, 1995.CrossRefGoogle Scholar
  75. 75.
    T. K. Attwood, B. J. Nelmes, and D. B. Sellen. Electron microscopy of beaded agarose gels. Biopolymers, 27:201–212, 1988.CrossRefGoogle Scholar
  76. 76.
    R. Nisslert, M. Kvarnstrom, N. Loren, M. Nyden, and M. Rudemo. Identification of the three-dimensional gel microstructure from transmission electron micrographs. Journal of Microscopy, 225:10–21, 2007.CrossRefPubMedGoogle Scholar
  77. 77.
    S. J. Asirvatham, P. A. Friedman, C. J. Bruce, and D. R. Holmes. Detecting and treating nervous system disorders. U. S. Patent Application 60/738, 718, 2005.Google Scholar
  78. 78.
    S. Freud. Civilization and Its Discontents. W. W. Norton and Company, New York reissue edition, 1989.Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Raghu Raghavan
    • 1
  1. 1.Therataxis, LLCBaltimoreUSA

Personalised recommendations