Skip to main content
View expanded cover

Liposomes pp 21–30Cite as

Use of Liposomes to Study Cellular Osmosensors

Part of the Methods in Molecular Biology™ book series (MIMB,volume 606)

Abstract

When cells are exposed to changes in the osmotic pressure of the external medium, they respond with mechanisms of osmoregulation. An increase of the extracellular osmolality leads to the accumulation of internal solutes by biosynthesis or uptake. Particular bacterial transporters act as osmosensors and respond to increased osmotic pressure by catalyzing uptake of compatible solutes. The functions of osmosensing, osmoregulation , and solute transport of these transporters can be analyzed in molecular detail after solubilization, isolation, and reconstitution into phospholipid vesicles. Using this approach, intrinsic functions of osmosensing transporters are studied in a defined hydrophilic (access to both sides of the membrane) and hydrophobic surrounding (phospholipid membrane), and free of putative interacting cofactors and regulatory proteins.

Key words

  • Osmotic stress
  • Osmosensing
  • Transport
  • Reconstitution
  • Liposome
  • Proteoliposome
  • Membrane protein
  • Phospholipid
  • Signal transduction

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-60761-447-0_3
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-60761-447-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.00
Price excludes VAT (USA)
Hardcover Book
USD   199.00
Price excludes VAT (USA)

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wood JM (1999) Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 63:230-262

    CAS  PubMed  Google Scholar 

  2. Poolman B, Spitzer JJ, Wood JM (2004) Bacterial osmosensing: roles of membrane structure and electrostatics in lipid-protein and protein-protein interactions. Biochim Biophys Acta 1666:88-104

    CAS  CrossRef  PubMed  Google Scholar 

  3. Morbach S, Krämer R (2003) Impact of transport processes in the osmotic response of Corynebacterium glutamicum. J Biotechnol 104:69-75

    CAS  CrossRef  PubMed  Google Scholar 

  4. Schaffner W, Weissmann C (1973) A rapid, sensitive and specific method for the determination of protein in dilute solution. Anal Biochem 56:502-514

    CAS  CrossRef  PubMed  Google Scholar 

  5. Landfald B, Strøm AR (1986) Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. J Bacteriol 165:849-55

    CAS  PubMed  Google Scholar 

  6. Rübenhagen R, Morbach S, Krämer R (2001) The osmoreactive betaine carrier BetP from Corynebacterium glutamicum is a sensor for cytoplasmic K+. EMBO J 20:5412-5420

    CrossRef  PubMed  Google Scholar 

  7. Rigaud J-L, Levy D (2003) Reconstitution of membrane proteins into liposomes. Methods Enzymol 372:65-86

    CAS  CrossRef  PubMed  Google Scholar 

  8. Paternostre MT, Roux M, Rigaud J-L (1988) Mechanism of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. Biochemistry 27:2668-2677

    CAS  CrossRef  PubMed  Google Scholar 

  9. Rigaud J-L, Mosser G, Lacapere J-J, Olofsson A, Levy D, Ranck J-L (1997) Bio-beads: an efficient strategy for two-dimensional crystallization of membrane proteins. J Struct Biol 118:226-235

    CAS  CrossRef  PubMed  Google Scholar 

  10. Zuidam NJ, Crommelin DJ (1995) Chemical hydrolysis of phospholipids. J Pharm Sci 84:1113-9

    CAS  CrossRef  PubMed  Google Scholar 

  11. Hernández-Caselles T, Villalaín J, Gómez-Fernández JC (1990) Stability of liposomes on long term storage. J Pharm Pharmacol 42:397-400

    PubMed  Google Scholar 

  12. Torchilin VP, Weissig V (2003) Liposomes, 2nd edn. Oxford University Press, New York

    Google Scholar 

  13. Allen TM, Cleland LG (1980) Serum-induced leakage of liposome contents. Biochim Biophys Acta 597:418-426

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Krämer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Krämer, R., Nicklisch, S., Ott, V. (2010). Use of Liposomes to Study Cellular Osmosensors. In: Weissig, V. (eds) Liposomes. Methods in Molecular Biology™, vol 606. Humana Press. https://doi.org/10.1007/978-1-60761-447-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-447-0_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-446-3

  • Online ISBN: 978-1-60761-447-0

  • eBook Packages: Springer Protocols