De Novo Sequencing Methods in Proteomics

  • Christopher Hughes
  • Bin Ma
  • Gilles A. Lajoie
Part of the Methods in Molecular Biology™ book series (MIMB, volume 604)


The review describes methods of de novo sequencing of peptides by mass spectrometry. De novo methods utilize computational approaches to deduce the sequence or partial sequence of peptides directly from the experimental MS/MS spectra. The concepts behind a number of de novo sequencing methods are discussed. The other approach to identify peptides by tandem mass spectrometry is to match the fragment ions with virtual peptide ions generated from a genomic or protein database. De novo methods are essential to identify proteins when the genomes are not known but they are also extremely useful even when the genomes are known since they are not affected by errors in a search database. Another advantage of de novo methods is that the partial sequence can be used to search for posttranslation modifications or for the identification of mutations by homology based software.

Key words

Proteomics Tandem mass spectrometry De novo sequencing Sequence tags Peptide fragmentation Homology 


  1. 1.
    Aebersold, R. and M. Mann, (2003). Mass spectrometry-based proteomics. Nature, 422 (6928): p. 198-207.PubMedCrossRefGoogle Scholar
  2. 2.
    Domon, B. and R. Aebersold, (2006). Mass spectrometry and protein analysis. Science, 312(5771): p. 212-7.PubMedCrossRefGoogle Scholar
  3. 3.
    Wisniewski, J.R., (2008). Mass spectrometry-based proteomics: principles, perspectives, and challenges. Arch Pathol Lab Med, 132(10): p. 1566-9.PubMedGoogle Scholar
  4. 4.
    Reinders, J., et al., (2004). Challenges in mass spectrometry-based proteomics. Proteomics, 4(12): p. 3686-703.PubMedCrossRefGoogle Scholar
  5. 5.
    Fenn, J.B., et al., (1989). Electrospray ionization for mass spectrometry of large biomolecules. Science, 246(4926): p. 64-71.PubMedCrossRefGoogle Scholar
  6. 6.
    Karas, M. and F. Hillenkamp, (1988). Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem, 60(20): p. 2299-301.PubMedCrossRefGoogle Scholar
  7. 7.
    Whitehouse, C.M., et al., (1985). Electrospray interface for liquid chromatographs and mass spectrometers. Anal Chem, 57(3): p. 675-9.PubMedCrossRefGoogle Scholar
  8. 8.
    Chernushevich, I.V., A.V. Loboda, and B.A. Thomson, (2001). An introduction to quadrupole-time-of-flight mass spectrometry. J Mass Spectrom, 36(8): p. 849-65.PubMedCrossRefGoogle Scholar
  9. 9.
    Roepstorff, P., (2000). MALDI-TOF mass spectrometry in protein chemistry. EXS, 88: p. 81-97.PubMedGoogle Scholar
  10. 10.
    Yost, R.A., and R.K. Boyd, (1990). Tandem mass-spectrometry - quadrupole and hybrid instruments. Methods Enzymol, 193: p. 154-200.PubMedCrossRefGoogle Scholar
  11. 11.
    Peterman, S.M., C.P. Dufresne, and S. Horning, (2005). The use of a hybrid linear trap/FT-ICR mass spectrometer for on-line high resolution/high mass accuracy bottom-up sequencing. J Biomol Tech, 16(2): p. 112-24.PubMedGoogle Scholar
  12. 12.
    Gizzi, G., et al., (2005). Determination of dioxins (PCDDs/PCDFs) and PCBs in food and feed using the DR CALUX (R) bioassay: results of an international validation study. Food Addit Contam, 22(5): p. 472-81.PubMedCrossRefGoogle Scholar
  13. 13.
    Delahunty, C. and J.R. Yates, (2005). Protein identification using 2D-LC-MS/MS. Methods, 35(3): p. 248-55.PubMedCrossRefGoogle Scholar
  14. 14.
    Steen, H. and M. Mann, (2004). The ABC’s (and XYZ’s) of peptide sequencing. Nat Rev Mol Cell Biol, 5(9): p. 699-711.PubMedCrossRefGoogle Scholar
  15. 15.
    Hayes, R.N. and M.L. Gross, (1990). Collision-Induced Dissociation. Methods Enzymol, 193: p. 237-63.PubMedCrossRefGoogle Scholar
  16. 16.
    McLuckey, S.A., D.E. Goeringer, and G.L. Glish, (1992). Collisional activation with random noise in ion trap mass spectrometry. Anal Chem, 64(13): p. 1455-60.PubMedCrossRefGoogle Scholar
  17. 17.
    Morris, H.R., et al., (1996). High sensitivity collisionally-activated decomposition tandem mass spectrometry on a novel quadrupole/orthogonal-acceleration time-of-flight mass spectrometer. Rapid Commun Mass Spectrom, 10(8): p. 889-96.PubMedCrossRefGoogle Scholar
  18. 18.
    Savitski, M.M., et al., (2007). Relative specificities of water and ammonia losses from backbone fragments in collision-activated dissociation. J Proteome Res, 6(7): p. 2669-73.PubMedCrossRefGoogle Scholar
  19. 19.
    Biemann, K., (1988). Contributions of mass spectrometry to peptide and protein structure. Biomed Environ Mass Spectrom, 16(1-12): p. 99-111.PubMedCrossRefGoogle Scholar
  20. 20.
    Breci, L.A., et al., (2003). Cleavage N-terminal to proline: analysis of a database of peptide tandem mass spectra. Anal Chem, 75(9): p. 1963-71.PubMedCrossRefGoogle Scholar
  21. 21.
    Huang, Y., et al., (2005). Statistical characterization of the charge state and residue dependence of low-energy CID peptide dissociation patterns. Anal Chem, 77(18): p. 5800-13.PubMedCrossRefGoogle Scholar
  22. 22.
    Mann, M., C.K. Meng, and J.B. Fenn, (1989). Interpreting mass-spectra of multiply charged ions. Anal Chem, 61(15): p. 1702-08.CrossRefGoogle Scholar
  23. 23.
    Paizs, B. and S. Suhai, (2004). Towards understanding the tandem mass spectra of protonated oligopeptides. 1: mechanism of amide bond cleavage. J Am Soc Mass Spectrom, 15(1): p. 103-13.Google Scholar
  24. 24.
    Paizs, B. and S. Suhai, (2005). Fragmentation pathways of protonated peptides. Mass Spectrom Rev, 24(4): p. 508-48.PubMedCrossRefGoogle Scholar
  25. 25.
    Roepstorff, P. and J. Fohlman, (1984). Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom, 11(11): p. 601.Google Scholar
  26. 26.
    Tabb, D.L., et al., (2003). Statistical characterization of ion trap tandem mass spectra from doubly charged tryptic peptides. Anal Chem, 75(5): p. 1155-63.PubMedCrossRefGoogle Scholar
  27. 27.
    Wysocki, V.H., et al., (2000). Mobile and localized protons: a framework for understanding peptide dissociation. J Mass Spectrom, 35(12): p. 1399-406.PubMedCrossRefGoogle Scholar
  28. 28.
    Zhang, Z., (2004). Prediction of low-energy collision-induced dissociation spectra of peptides. Anal Chem, 76(14): p. 3908-22.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhong, H., et al., (2004). Protein sequencing by mass analysis of polypeptide ladders after controlled protein hydrolysis. Nat Biotechnol, 22(10): p. 1291-6.PubMedCrossRefGoogle Scholar
  30. 30.
    Appella, E. and C.W. Anderson, (2007). New prospects for proteomics - electron-capture (ECD) and electron-transfer dissociation (ETD) fragmentation techniques and combined fractional diagonal chromatography (COFRADIC). FEBS J, 274(24): p. 6255.PubMedGoogle Scholar
  31. 31.
    Zubarev, R.A., (2004). Electron-capture dissociation tandem mass spectrometry. Curr Opin Biotechnol, 15(1): p. 12-6.PubMedCrossRefGoogle Scholar
  32. 32.
    Zubarev, R.A., et al., (2000). Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem, 72(3): p. 563-73.PubMedCrossRefGoogle Scholar
  33. 33.
    Lin, D., D.L. Tabb, and J.R. Yates, (2003). Large-scale protein identification using mass spectrometry. Biochim Biophys Acta, 1646(1-2): p. 1-10.PubMedGoogle Scholar
  34. 34.
    MacCoss, M.J., (2005). Computational analysis of shotgun proteomics data. Curr Opin Chem Biol, 9(1): p. 88-94.PubMedCrossRefGoogle Scholar
  35. 35.
    Johnson, R.S., et al., (2005). Informatics for protein identification by mass spectrometry. Methods, 35(3): p. 223-36.PubMedCrossRefGoogle Scholar
  36. 36.
    Forner, F., L.J. Foster, and S. Toppo, (2007). Mass spectrometry data analysis in the proteomics era. Curr Bioinform, 2(1): p. 63-93.CrossRefGoogle Scholar
  37. 37.
    Pedrioli, P.G., et al., (2004). A common open representation of mass spectrometry data and its application to proteomics research. Nat Biotechnol, 22(11): p. 1459-66.PubMedCrossRefGoogle Scholar
  38. 38.
    Ma, B., et al., (2003). PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom, 17(20): p. 2337-42.PubMedCrossRefGoogle Scholar
  39. 39.
    Perkins, D.N., et al., (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 20(18): p. 3551-67.PubMedCrossRefGoogle Scholar
  40. 40.
    Eng, J.K., A.L. Mccormack, and J.R. Yates, (1994). An approach to correlate tandem mass-spectral data of peptides with amino-acid-sequences in a protein database. J Am Soc Mass Spectrom, 5(11): p. 976-89.CrossRefGoogle Scholar
  41. 41.
    Yates, J.R., III, J.K. Eng, and A.L. McCormack, (1995). Mining genomes: correlating tandem mass spectra of modified and unmodified peptides to sequences in nucleotide databases. Anal Chem, 67(18): p. 3202-10.PubMedCrossRefGoogle Scholar
  42. 42.
    Craig, R., J.P. Cortens, and R.C. Beavis, (2005). The use of proteotypic peptide libraries for protein identification. Rapid Commun Mass Spectrom, 19(13): p. 1844-50.PubMedCrossRefGoogle Scholar
  43. 43.
    Frewen, B.E., et al., (2006). Analysis of peptide MS/MS spectra from large-scale proteomics experiments using spectrum libraries. Anal Chem, 78(16): p. 5678-84.PubMedCrossRefGoogle Scholar
  44. 44.
    Sadygov, R.G., D. Cociorva, and J.R. Yates, III, (2004). Large-scale database searching using tandem mass spectra: looking up the answer in the back of the book. Nat Methods, 1(3): p. 195-202.PubMedCrossRefGoogle Scholar
  45. 45.
    Sadygov, R.G., H.B. Liu, and J.R. Yates, (2004). Statistical models for protein validation using tandem mass spectral data and protein amino acid sequence databases. Anal Chem, 76(6): p. 1664-71.PubMedCrossRefGoogle Scholar
  46. 46.
    Yates, J.R., III, et al., (1995). Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem, 67(8): p. 1426-36.PubMedCrossRefGoogle Scholar
  47. 47.
    Eng, J.K., et al., (2008). A fast SEQUEST cross correlation algorithm. J Proteome Res, 7(10): p. 4598-602.PubMedCrossRefGoogle Scholar
  48. 48.
    Elias, J.E., et al., (2005). Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat Methods, 2(9): p. 667-75.PubMedCrossRefGoogle Scholar
  49. 49.
    Stein, S.E. and D.R. Scott, (1994). Optimization and testing of mass-spectral library search algorithms for compound identification. J Am Soc Mass Spectrom, 5(9): p. 859-66.CrossRefGoogle Scholar
  50. 50.
    Kapp, E.A., et al., (2005). An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: sensitivity and specificity analysis. Proteomics, 5(13): p. 3475-90.PubMedCrossRefGoogle Scholar
  51. 51.
    Craig, R. and R.C. Beavis, (2004). TANDEM: matching proteins with tandem mass spectra. Bioinformatics, 20(9): p. 1466-7.PubMedCrossRefGoogle Scholar
  52. 52.
    Craig, R. and R.C. Beavis, (2003). A method for reducing the time required to match protein sequences with tandem mass spectra. Rapid Commun Mass Spectrom, 17(20): p. 2310-6.PubMedCrossRefGoogle Scholar
  53. 53.
    Craig, R., J.P. Cortens, and R.C. Beavis, (2004). Open source system for analyzing, validating, and storing protein identification data. J Proteome Res, 3(6): p. 1234-42.PubMedCrossRefGoogle Scholar
  54. 54.
    Geer, L.Y., et al., (2004). Open mass spectrometry search algorithm. J Proteome Res, 3(5): p. 958-64.PubMedCrossRefGoogle Scholar
  55. 55.
    Zhang, N., R. Aebersold, and B. Schwilkowski, (2002). ProbID: a probabilistic algorithm to identify peptides through sequence database searching using tandem mass spectral data. Proteomics, 2(10): p. 1406-12.PubMedCrossRefGoogle Scholar
  56. 56.
    Colinge, J., et al., (2003). OLAV: towards high-throughput tandem mass spectrometry data identification. Proteomics, 3(8): p. 1454-63.PubMedCrossRefGoogle Scholar
  57. 57.
    Field, H.I., D. Fenyo, and R.C. Beavis, (2002). RADARS, a bioinformatics solution that automates proteome mass spectral analysis, optimises protein identification, and archives data in a relational database. Proteomics, 2(1): p. 36-47.PubMedCrossRefGoogle Scholar
  58. 58.
    Nesvizhskii, A.I., O. Vitek, and R. Aebersold, (2007). Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat Methods, 4(10): p. 787-97.PubMedCrossRefGoogle Scholar
  59. 59.
    Lam, H., et al., (2007). Development and validation of a spectral library searching method for peptide identification from MS/MS. Proteomics, 7(5): p. 655-67.PubMedCrossRefGoogle Scholar
  60. 60.
    Mann, M. and M. Wilm, (1994). Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem, 66(24): p. 4390-9.PubMedCrossRefGoogle Scholar
  61. 61.
    Xu, C. and B. Ma, (2006). Software for computational peptide identification from MS-MS data. Drug Discov Today, 11(13-14): p. 595-600.PubMedCrossRefGoogle Scholar
  62. 62.
    Dancik, V., et al., (1999). De novo peptide sequencing via tandem mass spectrometry. J Comput Biol, 6(3-4): p. 327-42.PubMedCrossRefGoogle Scholar
  63. 63.
    Johnson, R.S. and J.A. Taylor, (2002). Searching sequence databases via de novo peptide sequencing by tandem mass spectrometry. Mol Biotechnol, 22(3): p. 301-15.PubMedCrossRefGoogle Scholar
  64. 64.
    Taylor, J.A. and R.S. Johnson, (1997). Sequence database searches via de novo peptide sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom, 11(9): p. 1067-75.PubMedCrossRefGoogle Scholar
  65. 65.
    Taylor, J.A. and R.S. Johnson, (2001). Implementation and uses of automated de novo peptide sequencing by tandem mass spectrometry. Anal Chem, 73(11): p. 2594-604.PubMedCrossRefGoogle Scholar
  66. 66.
    Lu, B. and T. Chen, (2003). A suboptimal algorithm for de novo peptide sequencing via tandem mass spectrometry. J Comput Biol, 10(1): p. 1-12.PubMedCrossRefGoogle Scholar
  67. 67.
    Samgina, T.Y., et al., (2008). De novo sequencing of peptides secreted by the skin glands of the Caucasian Green Frog Rana ridibunda. Rapid Commun Mass Spectrom, 22(22): p. 3517-25.PubMedCrossRefGoogle Scholar
  68. 68.
    Standing, K.G., (2003). Peptide and protein de novo sequencing by mass spectrometry. Curr Opin Struct Biol, 13(5): p. 595-601.PubMedCrossRefGoogle Scholar
  69. 69.
    Xu, C. and B. Ma, (2006). Complexity and scoring function of MS/MS peptide de novo sequencing. Comput Syst Bioinformatics Conf: p. 361-9.Google Scholar
  70. 70.
    Frank, A. and P. Pevzner, (2005). PepNovo: de novo peptide sequencing via probabilistic network modeling. Anal Chem, 77(4): p. 964-73.PubMedCrossRefGoogle Scholar
  71. 71.
    Pitzer, E., A. Masselot, and J. Colinge, (2007). Assessing peptide de novo sequencing algorithms performance on large and diverse data sets. Proteomics, 7(17): p. 3051-4.PubMedCrossRefGoogle Scholar
  72. 72.
    Pevtsov, S., et al., (2006). Performance evaluation of existing de novo sequencing algorithms. J Proteome Res, 5(11): p. 3018-28.PubMedCrossRefGoogle Scholar
  73. 73.
    Chen, T., et al., (2001). A dynamic programming approach to de novo peptide sequencing via tandem mass spectrometry. J Comput Biol, 8(3): p. 325-37.PubMedCrossRefGoogle Scholar
  74. 74.
    Fernandez-de-Cossio, J., et al., (1998). Automated interpretation of high-energy collision-induced dissociation spectra of singly protonated peptides by ‘SeqMS’, a software aid for de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom, 12(23): p. 1867-78.PubMedCrossRefGoogle Scholar
  75. 75.
    Han, Y., B. Ma, and K. Zhang, (2004). SPIDER: software for protein identification from sequence tags with de novo sequencing error. Proc IEEE Comput Syst Bioinform Conf: p. 206-15.Google Scholar
  76. 76.
    Han, Y., B. Ma, and K. Zhang, (2005). SPIDER: software for protein identification from sequence tags with de novo sequencing error. J Bioinform Comput Biol, 3(3): p. 697-716.PubMedCrossRefGoogle Scholar
  77. 77.
    Alves, G. and Y.K. Yu, (2005). Robust accurate identification of peptides (RAId): deciphering MS2 data using a structured library search with de novo based statistics. Bioinformatics, 21(19): p. 3726-32.PubMedCrossRefGoogle Scholar
  78. 78.
    Zubarev, R.A., A.R. Zubarev, and M.M. Savitski, (2008). Electron capture/transfer versus collisionally activated/induced dissociations: solo or duet? J Am Soc Mass Spectrom, 19(6): p. 753-61.PubMedCrossRefGoogle Scholar
  79. 79.
    Kjeldsen, F., et al., (2003). Distinguishing of Ile/Leu amino acid residues in the PP3 protein by (hot) electron capture dissociation in Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem, 75(6): p. 1267-74.PubMedCrossRefGoogle Scholar
  80. 80.
    Cantin, G.T. and J.R. Yates, III, (2004). Strategies for shotgun identification of post-translational modifications by mass spectrometry. J Chromatogr A, 1053(1-2): p. 7-14.PubMedGoogle Scholar
  81. 81.
    Kelleher, N.L., et al., (1999). Localization of labile posttranslational modifications by electron capture dissociation: the case of gamma-carboxyglutamic acid. Anal Chem, 71(19): p. 4250-3.PubMedCrossRefGoogle Scholar
  82. 82.
    Nielsen, M.L., M.M. Savitski, and R.A. Zubarev, (2005). Improving protein identification using complementary fragmentation techniques in Fourier transform mass spectrometry. Mol Cell Proteomics, 4(6): p. 835-45.PubMedCrossRefGoogle Scholar
  83. 83.
    Savitski, M.M., M.L. Nielsen, and R.A. Zubarev, (2007). Side-chain losses in electron capture dissociation to improve peptide identification. Anal Chem, 79(6): p. 2296-302.PubMedCrossRefGoogle Scholar
  84. 84.
    Silivra, O.A., et al., (2005). Electron capture dissociation of polypeptides in a three-dimensional quadrupole ion trap: Implementation and first results. J Am Soc Mass Spectrom, 16(1): p. 22-7.PubMedCrossRefGoogle Scholar
  85. 85.
    Reinders, J. and A. Sickmann, (2005). State-of-the-art in phosphoproteomics. Proteomics, 5(16): p. 4052-61.PubMedCrossRefGoogle Scholar
  86. 86.
    Savitski, M.M., et al., (2007). Hydrogen rearrangement to and from radical z fragments in electron capture dissociation of peptides. J Am Soc Mass Spectrom, 18(1): p. 113-20.PubMedCrossRefGoogle Scholar
  87. 87.
    Savitski, M.M., et al., (2005). Proteomics-grade de novo sequencing approach. J Proteome Res, 4(6): p. 2348-54.PubMedCrossRefGoogle Scholar
  88. 88.
    Savitski, M.M., M.L. Nielsen, and R.A. Zubarev, (2005). New data base-independent, sequence tag-based scoring of peptide MS/MS data validates Mowse scores, recovers below threshold data, singles out modified peptides, and assesses the quality of MS/MS techniques. Mol Cell Proteomics, 4(8): p. 1180-8.PubMedCrossRefGoogle Scholar
  89. 89.
    Clauser, K.R., P. Baker, and A.L. Burlingame, (1999). Role of accurate mass measurement (±10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal Chem, 71(14): p. 2871-82.PubMedCrossRefGoogle Scholar
  90. 90.
    Falth, M., et al., (2007). SwedCAD, a database of annotated high-mass accuracy MS/MS spectra of tryptic peptides. J Proteome Res, 6(10): p. 4063-7.PubMedCrossRefGoogle Scholar
  91. 91.
    Zubarev, R. and M. Mann, (2007). On the proper use of mass accuracy in proteomics. Mol Cell Proteomics, 6(3): p. 377-81.PubMedGoogle Scholar
  92. 92.
    Frank, A.M., et al., (2007). De novo peptide sequencing and identification with precision mass spectrometry. J Proteome Res, 6(1): p. 114-23.PubMedCrossRefGoogle Scholar
  93. 93.
    Benjamini, Y. and Y. Hochberg, (1995). Controlling the false discovery rate - a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol, 57(1): p. 289-300.Google Scholar
  94. 94.
    Balgley, B.M., et al., (2007). Comparative evaluation of tandem MS search algorithms using a target-decoy search strategy. Mol Cell Proteomics, 6(9): p. 1599-608.PubMedCrossRefGoogle Scholar
  95. 95.
    Choi, H., D. Ghosh, and A.I. Nesvizhskii, (2008). Statistical validation of peptide identifications in large-scale proteomics using the target-decoy database search strategy and flexible mixture modeling. J Proteome Res, 7(1): p. 286-92.PubMedCrossRefGoogle Scholar
  96. 96.
    Elias, J.E. and S.P. Gygi, (2007). Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods, 4(3): p. 207-14.PubMedCrossRefGoogle Scholar
  97. 97.
    States, D.J., et al., (2006). Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study. Nat Biotechnol, 24(3): p. 333-8.PubMedCrossRefGoogle Scholar
  98. 98.
    Peng, J., et al., (2003). Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res, 2(1): p. 43-50.PubMedCrossRefGoogle Scholar
  99. 99.
    Beer, I., et al., (2004). Improving large-scale proteomics by clustering of mass spectrometry data. Proteomics, 4(4): p. 950-60.PubMedCrossRefGoogle Scholar
  100. 100.
    Carr, S., et al., (2004). The need for guidelines in publication of peptide and protein identification data: Working Group on Publication Guidelines for Peptide and Protein Identification Data. Mol Cell Proteomics, 3(6): p. 531-3.PubMedCrossRefGoogle Scholar
  101. 101.
    Nesvizhskii, A.I. and R. Aebersold, (2005). Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteomics, 4(10): p. 1419-40.PubMedCrossRefGoogle Scholar
  102. 102.
    Klammer, A.A., et al., (2007). Improving tandem mass spectrum identification using peptide retention time prediction across diverse chromatography conditions. Anal Chem, 79(16): p. 6111-8.PubMedCrossRefGoogle Scholar
  103. 103.
    Fenyo, D. and R.C. Beavis, (2003). A method for assessing the statistical significance of mass spectrometry-based protein identifications using general scoring schemes. Anal Chem, 75(4): p. 768-74.PubMedCrossRefGoogle Scholar
  104. 104.
    MacLean, B., et al., (2006). General framework for developing and evaluating database scoring algorithms using the TANDEM search engine. Bioinformatics, 22(22): p. 2830-2.PubMedCrossRefGoogle Scholar
  105. 105.
    Nesvizhskii, A.I., et al., (2003). A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem, 75(17): p. 4646-58.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of Western OntarioLondonCanada
  2. 2.David Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations