Computational Resources for the Prediction and Analysis of Native Disorder in Proteins

  • Melissa M. Pentony
  • Jonathan Ward
  • David T. Jones
Part of the Methods in Molecular Biology™ book series (MIMB, volume 604)


Proteomics attempts to characterise the gene products expressed in a cell or tissue via a range of biophysical techniques including crystallography and NMR and, more relevantly to this volume, chromatography and mass spectrometry. It is becoming increasingly clear that the native states of segments of many of the cellular proteins are not stable, folded structures, and much of the proteome is in an unfolded, disordered state. These proteins and their disordered segments have functionally interesting properties and provide novel challenges for the biophysical techniques that are used to study them. This chapter focuses on computational approaches to predicting such regions and analyzing the functions linked to them, and has implications for protein scientists who wish to study such properties as molecular recognition and post-translational modifications. We also discuss resources where the results of predictions have been collated, making them publicly available to the wider biological community.

Key words

Protein disorder Protein function Protein structure Genomes Disorder databases 


  1. 1.
    Laskowski, R.A., Watson, J.D. and Thornton, J.M. (2005) ProFunc: a server for predicting protein function from 3D structure. Nucleic Acids Res. 33, W89-W93, 10.1093/nar/gki414.
  2. 2.
    Pazos, F. and Sternberg, M.J.E. (2004) Automated prediction of protein function and detection of functional sites from structure. Proc Natl Acad Sci U S A. 101, 14754-14759, 10.1073/pnas.0404569101.
  3. 3.
    Wright, P.E. and Dyson, H.J. (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol. Biol. 293, 321-331.CrossRefPubMedGoogle Scholar
  4. 4.
    Gerstein, M. and Echols, N. (2004) Exploring the range of protein flexibility, from a structural proteomics perspective. Curr Opin. Chem. Biol. 8, 14-19.CrossRefPubMedGoogle Scholar
  5. 5.
    Dunker, A.K. and Obradovic, Z. (2001) The protein trinity-linking function and disorder. Nature Biotechnol. 19, 805-806.CrossRefGoogle Scholar
  6. 6.
    Iakoucheva, L.M., Radivojac, P., Brown, C.J., O’Connor, T.R., Sikes, J.G., Obradovic, Z. and Dunker, A.K. (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res. 32, 1037.CrossRefPubMedGoogle Scholar
  7. 7.
    Iakoucheva, L.M., Brown, C.J., Lawson, J.D., Obradovic, Z. and Dunker, A.K. (2002) Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol. Biol. 323, 573-584.CrossRefPubMedGoogle Scholar
  8. 8.
    Donne, D.G., Viles, J.H., Groth, D., Mehl- horn, I., James, T.L., Cohen, F.E., Prusiner, S.B., Wright, P.E. and Dyson, H.J. (1997) Structure of the recombinant full-length hamster prion protein PrP (29-231): The N terminus is highly flexible National Acad Sciences.Google Scholar
  9. 9.
    DuBay, K.F., Pawar, A.P., Chiti, F., Zurdo, J., Dobson, C.M. and Vendruscolo, M. (2004) Prediction of the absolute aggregation rates of amyloidogenic polypeptide chains. J Mol. Biol., 341, 1317-1326.CrossRefPubMedGoogle Scholar
  10. 10.
    Romero, P., Obradovic, Z., Kissinger, C., Villafranca, J.E. and Dunker, A.K. (1997) Identifying disordered regions in proteins from amino acid sequence. In Neural Networks, 1997., International Conference on. Vol. 1.Google Scholar
  11. 11.
    Li, X., Romero, P., Rani, M., Dunker, A.K. and Obradovic, Z. (1999) Predicting protein disorder for N-, C-, and internal regions. Genome Informatics Series, 30-40.Google Scholar
  12. 12.
    Romero, P., Obradovic, Z., Li, X., Garner, E.C., Brown, C.J. and Dunker, A.K. (2001) Sequence complexity of disordered protein. Proteins-New York-, 42, 38-48.Google Scholar
  13. 13.
    Vucetic, S., Obradovic, Z., Vacic, V., Radivojac, P., Peng, K., Iakoucheva, L.M., Cortese, M.S., Lawson, J.D., Brown, C.J. and Sikes, J.G. (2005) DisProt: a database of protein disorder Oxford Univ Press.Google Scholar
  14. 14.
    Rost, B. (1996) PHD: predicting 1D protein structure byprofile based neural networks. Meth enzymol, 266, 525-539.CrossRefPubMedGoogle Scholar
  15. 15.
    Liu, J., Tan, H. and Rost, B. (2002) Loopy proteins appear conserved in evolution. J Mol Biol, 322, 53-64.CrossRefPubMedGoogle Scholar
  16. 16.
    Bracken, C. (2001) NMR spin relaxation methods for characterization of disorder and folding in proteins. J Mol. Graph. Model. 19, 3-12.CrossRefPubMedGoogle Scholar
  17. 17.
    Vucetic, S., Brown, C.J., Dunker, A.K. and Obradovic, Z. (2003) Flavors of protein disorder. Proteins Struct. Funct. Genet. 52, 573-584.CrossRefGoogle Scholar
  18. 18.
    Dunker, A.K., Obradovic, Z., Romero, P., Garner, E.C. and Brown, C.J. (2000) Intrinsic protein disorder in complete genomes. Genome Informatics Series, 161-171.Google Scholar
  19. 19.
    Uversky, V.N., Gillespie, J.R. and Fink, A.L. (2000) Why are“natively unfolded” proteins unstructured under physiologic conditions? Proteins Struct Funct Genet, 41, 415-427.CrossRefPubMedGoogle Scholar
  20. 20.
    Prilusky, J., Felder, C.E., Zeev-Ben-Mordehai, T., Rydberg, E.H., Man, O., Beckmann, J.S., Silman, I. and Sussman, J.L. (2005) FoldIndex©: a simple tool to predict whether a given protein sequence is intrinsically unfolded Oxford Univ Press.Google Scholar
  21. 21.
    Liu, J. and Rost, B. (2003) NORSp: Predictions of long regions without regular secondary structure. Nucleic Acids Res, 31, 3833-5.CrossRefPubMedGoogle Scholar
  22. 22.
    Linding, R., Jensen, L.J., Diella, F., Bork, P., Gibson, T.J. and Russell, R.B. (2003) Protein disorder prediction implications for structural proteomics. Structure, 11, 1453-1459.CrossRefPubMedGoogle Scholar
  23. 23.
    Ward, J.J., Sodhi, J.S., McGuffin, L.J., Buxton, B.F. and Jones, D.T. (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol, 337, 635-645.CrossRefPubMedGoogle Scholar
  24. 24.
    Vapnik, V.N. (2000) The Nature of Statistical Learning Theory Springer.Google Scholar
  25. 25.
    Jones, D.T. (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol. Biol. 292, 195-202.CrossRefPubMedGoogle Scholar
  26. 26.
    Melamud, E. and Moult, J. (2003) Evaluation of disorder predictions in CASP5. Proteins-New York-, 53, 561-565.Google Scholar
  27. 27.
    Bordoli, L., Kiefer, F. and Schwede, T. (2007) Assessment of disorder predictions in CASP7. Proteins, 69, 129-36.CrossRefPubMedGoogle Scholar
  28. 28.
    Dosztányi, Z., Csizmók, V., Tompa, P. and Simon, I. (2005) The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol. Biol. 347, 827-839.CrossRefPubMedGoogle Scholar
  29. 29.
    Ferron, F., Longhi, S., Canard, B. and Karlin, D. (2006) A practical overview of protein disorder prediction methods. Proteins, 65, 1-14.CrossRefPubMedGoogle Scholar
  30. 30.
    Ishida, T. and Kinoshita, K. (2008) Prediction of disordered regions in proteins based on the meta approach. Bioinformatics, 24, 1344-8, 10.1093/bioinformatics/btn195.
  31. 31.
    Lieutaud, P., Canard, B. and Longhi, S. (2008) MeDor: a metaserver for predicting protein disorder. BMC Genomics, 9 Suppl 2, S25, 10.1186/1471-2164-9-S2-S25.
  32. 32.
    Dyson, H.J. and Wright, P.E. (2005) Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6, 197-208.CrossRefPubMedGoogle Scholar
  33. 33.
    Xie, H., Vucetic, S., Iakoucheva, L.M., Oldfield,C.J., Dunker,A.K., Uversky,V.N. and Obradovic,Z. (2007) Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J. Proteome Res, 6, 1882-1898.Google Scholar
  34. 34.
    Uversky, V.N., Radivojac, P., Iakoucheva, L.M., Obradovic, Z. and Dunker, A.K. (2007) Prediction of Intrinsic Disorder and Its Use in Functional Proteomics. Meth Mol Biol-Clifton Then Totowa-, 408, 69.Google Scholar
  35. 35.
    Haynes, C., Oldfield, C.J., Ji,F., Klitgord, N., Cusick, M.E., Radivojac, P., Uversky, V.N., Vidal, M. and Iakoucheva,L.M. (2006) Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput Biol, 2, e100.CrossRefPubMedGoogle Scholar
  36. 36.
    Jones, D.T. (2007) Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics, 23, 538.CrossRefPubMedGoogle Scholar
  37. 37.
    Jones, D.T. and Swindells, M.B. (2002) Getting the most from PSI-BLAST. Trends in Biochemical Sciences, 27, 161-164.CrossRefPubMedGoogle Scholar
  38. 38.
    Siepen, J.A., Belhajjame, K., Selley, J.N., Embury, S.M., Paton, N.W., Goble, C.A., Oliver, S.G., Stevens, R., Zamboulis, L., Martin, N. Hubbard S.J (2008) ISPIDER Central: an integrated database web-server for proteomics. Nucleic Acids Res 36, W485-W490.Google Scholar
  39. 39.
    Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4673.CrossRefPubMedGoogle Scholar
  40. 40.
    Ward, J.J., McGuffin, L.J., Bryson, K., Buxton, B.F. and Jones, D.T. (2004) The DISOPRED server for the prediction of protein disorder Oxford Univ Press.Google Scholar
  41. 41.
    Hegyi, H. and Gerstein, M. (1999) The relationship between protein structure and function: a comprehensive survey with application to the yeast genome. J Mol. Biol. 288, 147-164.CrossRefPubMedGoogle Scholar
  42. 42.
    Weinreb, P.H., Zhen, W., Poon, A.W., Conway, K.A. and Lansbury Jr, P.T. (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry, 35, 13709-13715.CrossRefPubMedGoogle Scholar
  43. 43.
    Cheng, Y., LeGall, T., Oldfield, C.J., Dunker, A.K. and Uversky, V.N. (2006) Abundance of intrinsic disorder in protein associated with cardiovascular disease. Biochemistry, 45, 10448-10460.CrossRefPubMedGoogle Scholar
  44. 44.
    Superti-Furga, A., Steinmann, B., Ramirez, F. and Byers, P.H. (1989) Molecular defects of type III procollagen in Ehlers-Danlos syndrome type IV. Hum. Genet. 82, 104-108.CrossRefPubMedGoogle Scholar
  45. 45.
    Barker, D.F., Hostikka, S.L., Zhou, J., Chow, L.T., Oliphant,A.R., Gerken,S.C., Gregory, M.C., Skolnick, M.H., Atkin, C.L. and Tryggvason, K. (1990) Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science. 248, 1224-1227.CrossRefPubMedGoogle Scholar
  46. 46.
    Bogin, O., Kvansakul, M., Rom,E., Singer, J., Yayon, A. and Hohenester, E. (2002) Insight into Schmid Metaphyseal Chondrodysplasia from the Crystal Structure of the Collagen X NC1 Domain Trimer. Structure, 10, 165-173.CrossRefPubMedGoogle Scholar
  47. 47.
    Kainulainen, K., Karttunen, L., Puhakka, L., Sakai, L. and Peltonen, L. (1994) Mutations in the fibrillin gene responsible for dominant ectopia lentis and neonatal Marfan syndrome. Nature Genet. 6, 64-69.CrossRefPubMedGoogle Scholar
  48. 48.
    Putnam, E.A., Zhang, H., Ramirez, F. and Milewicz, D.M. (1995) Fibrillin-2 (FBN2) mutations result in the Marfan-like disorder, congenital contractural arachnodactyly. Nature Genet. 11, 456-458.CrossRefPubMedGoogle Scholar
  49. 49.
    Wang, Y., Zhao, J., Tu, P., Jiang, W. and Zhu, X. (2007) A novel missense mutation in COL7A1 in a Chinese pedigree with epidermolysis bullosa pruriginosa. J Dermatol Sci. 46, 211-213.CrossRefPubMedGoogle Scholar
  50. 50.
    Romero, P.R., Zaidi, S., Fang, Y.Y., Uversky, V.N., Radivojac, P., Oldfield, C.J., Cortese, M.S., Sickmeier, M., LeGall, T. and Obradovic, Z. (2006) Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc. Natl. Acad Sci. 103, 8390-8395.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Melissa M. Pentony
    • 1
  • Jonathan Ward
    • 1
  • David T. Jones
    • 1
  1. 1.Department of Computer ScienceUniversity College LondonLondonUK

Personalised recommendations