Advertisement

Circumventing Tumor Resistance to Chemotherapy by Nanotechnology

  • Xing-Jie LiangEmail author
  • Chunying Chen
  • Yuliang Zhao
  • Paul C. Wang
Part of the Methods in Molecular Biology book series (MIMB, volume 596)

Abstract

Patient relapse and metastasis of malignant cells is very common after standard cancer treatment with surgery, radiation, and/or chemotherapy. Chemotherapy, a cornerstone in the development of present day cancer therapy, is one of the most effective and potent strategies to treat malignant tumors. However, the resistance of cancer cells to the drugs remains a significant impediment to successful chemotherapy. An additional obstacle is the inability of chemotherapeutic drugs to selectively target tumor cells. Almost all the anticancer agents have severe side effects on normal tissues and organs. The toxicity of currently available anticancer drugs and the inefficiency of chemotherapeutic treatments, especially for advanced stages of the disease, have limited the optimization of clinical drug combinations and effective chemotherapeutic protocols. Nanomedicine allows the release of drugs by biodegradation and self-regulation of nanomaterials in vitro and in vivo. Nanotechnologies are characterized by effective drug encapsulation, controllable self-assembly, specificity and biocompatibility as a result of their own material properties. Nanotechnology has the potential to overcome current chemotherapeutic barriers in cancer treatment, because of the unique nanoscale size and distinctive bioeffects of nanomaterials. Nanotechnology may help to solve the problems associated with traditional chemotherapy and multidrug resistance.

Key words:

Cancer chemotherapy, Drug resistance, Nanomedicine, Nanotechnology 

Notes

Acknowledgments

We thank Mr. Xu Zhang for research assistance during the preparation of its manuscript. We also appreciate the help of Dr. Michael M. Gottesman for critical reading of the manuscript. Our work is financially supported by the Chinese Academy of Sciences “Hundred Talents Program” (07165111ZX), and the National Basic Research Program of China (2009CB930200). This work was also supported in part by NIH/ NCRR/ RCMI 2G12RR003048, NIH 5U 54CA091431, and USAMRMC W81XWH-05-1-0291 grants.

References

  1. 1.
    Leaf C (2004) Why we’re losing the war on cancer (and how to win it). Fortune 149:76–82Google Scholar
  2. 2.
    Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627CrossRefPubMedGoogle Scholar
  3. 3.
    Calatozzolo C, Gelati M, Ciusani E et al (2005) Expression of drug resistance proteins Pgp, MRP1, MRP3, MRP5 and GST-pi in human glioma. J Neurooncol 74:113–121CrossRefPubMedGoogle Scholar
  4. 4.
    Links M, Brown R (1999) Clinical relevance of the molecular mechanisms of resistance to anti-cancer drugs. Expert Rev Mol Med 1999:1–21PubMedGoogle Scholar
  5. 5.
    McNeil SE (2005) Nanotechnology for the biologist. J Leukoc Biol 78:585–594CrossRefPubMedGoogle Scholar
  6. 6.
    Grodzinski P, Silver M, Molnar LK (2006) Nanotechnology for cancer diagnostics: promises and challenges. Expert Rev Mol Diagn 6:307–318CrossRefPubMedGoogle Scholar
  7. 7.
    Stella B, Arpicco S, Peracchia MT et al (2000) Design of folic acid-conjugated nanoparticles for drug targeting. J Pharm Sci 89:1452–1464CrossRefPubMedGoogle Scholar
  8. 8.
    Kontermann RE (2006) Immunoliposomes for cancer therapy. Curr Opin Mol Ther 8:39–45PubMedGoogle Scholar
  9. 9.
    van Vlerken LE, Duan ZF, Seiden MV, Amiji MM (2007) Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer. Cancer Res 67:4843–4850CrossRefPubMedGoogle Scholar
  10. 10.
    Kubiak C, Couvreur P, Manil L, Clausse B (1989) Increased cytotoxicity of nanoparticle-carried Adriamycin in vitro and potentiation by verapamil and amiodarone. Biomaterials 10:553–556CrossRefPubMedGoogle Scholar
  11. 11.
    Colin de Verdiere A, Dubernet C, Nemati F et al (1994) Uptake of doxorubicin from loaded nanoparticles in multidrug-resistant leukemic murine cells. Cancer Chemother Pharmacol 33:504–508PubMedGoogle Scholar
  12. 12.
    Soma CE, Dubernet C, Bentolila D, Benita S, Couvreur P (2000) Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin A in polyalkylcyanoacrylate nanoparticles. Biomaterials 21:1–7CrossRefPubMedGoogle Scholar
  13. 13.
    Shoji Y, Nakashima H (2004) Current status of delivery systems to improve target efficacy of oligonucleotides. Curr Pharm Des 10:785–796CrossRefPubMedGoogle Scholar
  14. 14.
    Brigui I, Djavanbakht-Samani T, Jolles B, Pigaglio S, Laigle A (2003) Minimally modified phosphodiester antisense oligodeoxyribonucleotide directed against the multidrug resistance gene mdr1. Biochem Pharmacol 65:747–754CrossRefPubMedGoogle Scholar
  15. 15.
    Reddy LH, Sharma RK, Murthy RS (2004) Enhanced tumour uptake of doxorubicin loaded poly(butyl cyanoacrylate) nanoparticles in mice bearing Dalton’s lymphoma tumour. J Drug Target 12:443–451CrossRefPubMedGoogle Scholar
  16. 16.
    Gref R, Minamitake Y, Peracchia MT et al (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603CrossRefPubMedGoogle Scholar
  17. 17.
    Stolnik S, Dunn SE, Garnett MC et al (1994) Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers. Pharm Res 11:1800–1808CrossRefPubMedGoogle Scholar
  18. 18.
    Peracchia MT, Fattal E, Desmaele D et al (1999) Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J Control Release 60:121–128CrossRefPubMedGoogle Scholar
  19. 19.
    Calvo P, Gouritin B, Chacun H et al (2001) Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm Res 18:1157–1166CrossRefPubMedGoogle Scholar
  20. 20.
    Calvo P, Gouritin B, Villarroya H et al (2002) Quantification and localization of PEGylated polycyanoacrylate nanoparticles in brain and spinal cord during experimental allergic encephalomyelitis in the rat. Eur J NeuroSci 15:1317–1326CrossRefPubMedGoogle Scholar
  21. 21.
    Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54:631–651CrossRefPubMedGoogle Scholar
  22. 22.
    Brigger I, Morizet J, Aubert G et al (2002) Poly(ethylene glycol)-coated hexadecylcyanoacrylate nanospheres display a combined effect for brain tumor targeting. J Pharmacol Exp Ther 303:928–936CrossRefPubMedGoogle Scholar
  23. 23.
    Maeda H, Greish K, Fang J (2006) The EPR effect and polymeric drugs: a paradigm shift for cancer chemotherapy in the 21st century. In: Satchi-Fainaro R, Duncan R (eds) Polymer therapeutics II: polymers as drugs, conjugates and gene delivery systems. Springer-Verlag, Berlin, Heidelberg, pp 103–121Google Scholar
  24. 24.
    Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207CrossRefPubMedGoogle Scholar
  25. 25.
    Yuan F, Dellian M, Fukumura D et al (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55:3752–3756PubMedGoogle Scholar
  26. 26.
    Kopecek J, Kopeckova P, Minko T, Lu ZR, Peterson CM (2001) Water soluble polymers in tumor targeted delivery. J Control Release 74:147–158CrossRefPubMedGoogle Scholar
  27. 27.
    Leu AJ, Berk DA, Lymboussaki A, Alitalo K, Jain RK (2000) Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res 60:4324–4327PubMedGoogle Scholar
  28. 28.
    Jain RK (1994) Barriers to drug delivery in solid tumors. Sci Am 271:58–65CrossRefPubMedGoogle Scholar
  29. 29.
    Gabizon A, Shmeeda H, Horowitz AT, Zalipsky S (2004) Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Adv Drug Deliv Rev 56:1177–1192CrossRefPubMedGoogle Scholar
  30. 30.
    Krishna R, Mayer LD (2000) Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 11:265–283CrossRefPubMedGoogle Scholar
  31. 31.
    Koo OM, Rubinstein I, Onyuksel H (2006) Camptothecin in sterically stabilized phospholipid nano-micelles: a novel solvent pH change solubilization method. J Nanosci Nanotechnol 6:2996–3000CrossRefPubMedGoogle Scholar
  32. 32.
    Yih TC, Al-Fandi M (2006) Engineered nanoparticles as precise drug delivery systems. J Cell Biochem 97:1184–1190CrossRefPubMedGoogle Scholar
  33. 33.
    Madshus IH (1988) Regulation of intracellular pH in eukaryotic cells. Biochem J 250:1–8PubMedGoogle Scholar
  34. 34.
    Mahoney BP, Raghunand N, Baggett B, Gillies RJ (2003) Tumor acidity, ion trapping and chemotherapeutics. I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem Pharmacol 66:1207–1218CrossRefPubMedGoogle Scholar
  35. 35.
    Acker T, Plate KH (2004) Hypoxia and hypoxia inducible factors (HIF) as important regulators of tumor physiology. Cancer Treat Res 117:219–248PubMedGoogle Scholar
  36. 36.
    Hussein D, Estlin EJ, Dive C, Makin GW (2006) Chronic hypoxia promotes hypoxia-inducible factor-1alpha-dependent resistance to etoposide and vincristine in neuroblastoma cells. Mol Cancer Ther 5:2241–2250CrossRefPubMedGoogle Scholar
  37. 37.
    Krishnamurthy P, Schuetz JD (2006) Role of ABCG2/BCRP in biology and medicine. Annu Rev Pharmacol Toxicol 46:381–410CrossRefPubMedGoogle Scholar
  38. 38.
    Ahmad KA, Iskandar KB, Hirpara JL, Clement MV, Pervaiz S (2004) Hydrogen peroxide-mediated cytosolic acidification is a signal for mitochondrial translocation of Bax during drug-induced apoptosis of tumor cells. Cancer Res 64:7867–7878CrossRefPubMedGoogle Scholar
  39. 39.
    Savic R, Luo L, Eisenberg A, Maysinger D (2003) Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 300:615–618CrossRefPubMedGoogle Scholar
  40. 40.
    Geng Y, Dalhaimer P, Cai S et al (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2:249–255CrossRefPubMedGoogle Scholar
  41. 41.
    Chen C, Xing G, Wang J et al (2005) Multihydroxylated [Gd@C82(OH)22]n nanoparticles: antineoplastic activity of high efficiency and low toxicity. Nano Lett 5:2050–2057CrossRefPubMedGoogle Scholar
  42. 42.
    Lu J, Liong M, Zink JI, Tamanoi F (2007) Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 3:1341–1346CrossRefPubMedGoogle Scholar
  43. 43.
    Wartlick H, Spankuch-Schmitt B, Strebhardt K, Kreuter J, Langer K (2004) Tumour cell delivery of antisense oligonuclceotides by human serum albumin nanoparticles. J Control Release 96:483–495CrossRefPubMedGoogle Scholar
  44. 44.
    Rosenberg B, Vancamp L, Krigas T (1965) Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 205:698–699CrossRefPubMedGoogle Scholar
  45. 45.
    Rosenberg B (1977) Noble metal complexes in cancer chemotherapy. Adv Exp Med Biol 91:129–150PubMedGoogle Scholar
  46. 46.
    Hill JM, Speer RJ (1982) Organo-platinum complexes as antitumor agents (review). Anticancer Res 2:173–186PubMedGoogle Scholar
  47. 47.
    Rosenberg B, VanCamp L, Trosko JE, Mansour VH (1969) Platinum compounds: a new class of potent antitumour agents. Nature 222:385–386CrossRefPubMedGoogle Scholar
  48. 48.
    Oliver T, Mead G (1993) Testicular cancer. Curr Opin Oncol 5:559–567CrossRefPubMedGoogle Scholar
  49. 49.
    Liang XJ, Shen DW, Gottesman MM (2004) A pleiotropic defect reducing drug accumulation in cisplatin-resistant cells. J Inorg Biochem 98:1599–1606CrossRefPubMedGoogle Scholar
  50. 50.
    Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7:573–584CrossRefPubMedGoogle Scholar
  51. 51.
    Ishida S, Lee J, Thiele DJ, Herskowitz I (2002) Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci USA 99:14298–14302CrossRefPubMedGoogle Scholar
  52. 52.
    Katano K, Kondo A, Safaei R et al (2002) Acquisition of resistance to cisplatin is accompanied by changes in the cellular pharmacology of copper. Cancer Res 62:6559–6565PubMedGoogle Scholar
  53. 53.
    Holzer AK, Howell SB (2006) The internalization and degradation of human copper transporter 1 following cisplatin exposure. Cancer Res 66:10944–10952CrossRefPubMedGoogle Scholar
  54. 54.
    Ishikawa T (1992) The ATP-dependent glutathione S-conjugate export pump. Trends Biochem Sci 17:463–468CrossRefPubMedGoogle Scholar
  55. 55.
    Kelland LR, Mistry P, Abel G et al (1992) Mechanism-related circumvention of acquired cis-diamminedichloroplatinum(II) resistance using two pairs of human ovarian carcinoma cell lines by ammine/amine platinum(IV) dicarboxylates. Cancer Res 52:3857–3864PubMedGoogle Scholar
  56. 56.
    Shen DW, Goldenberg S, Pastan I, Gottesman MM (2000) Decreased accumulation of [14C]carboplatin in human cisplatin-resistant cells results from reduced energy-dependent uptake. J Cell Physiol 183:108–116CrossRefPubMedGoogle Scholar
  57. 57.
    Lin X, Okuda T, Holzer A, Howell SB (2002) The copper transporter CTR1 regulates cisplatin uptake in Saccharomyces cerevisiae. Mol Pharmacol 62:1154–1159CrossRefPubMedGoogle Scholar
  58. 58.
    Burger KN, Staffhorst RW, de Vijlder HC et al (2002) Nanocapsules: lipid-coated aggregates of cisplatin with high cytotoxicity. Nat Med 8:81–84CrossRefPubMedGoogle Scholar
  59. 59.
    Nishiyama N, Okazaki S, Cabral H et al (2003) Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res 63:8977–8983PubMedGoogle Scholar
  60. 60.
    Gordon AN, Tonda M, Sun S, Rackoff W (2004) Long-term survival advantage for women treated with pegylated liposomal doxorubicin compared with topotecan in a phase 3 randomized study of recurrent and refractory epithelial ovarian cancer. Gynecol Oncol 95:1–8CrossRefPubMedGoogle Scholar
  61. 61.
    Gradishar WJ, Tjulandin S, Davidson N et al (2005) Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 23:7794–7803CrossRefPubMedGoogle Scholar
  62. 62.
    Gore ME, Atkinson RJ, Thomas H et al (2002) A phase II trial of ZD0473 in platinum-pretreated ovarian cancer. Eur J Cancer 38:2416–2420CrossRefPubMedGoogle Scholar
  63. 63.
    Iinuma H, Maruyama K, Okinaga K et al (2002) Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int J Cancer 99:130–137CrossRefPubMedGoogle Scholar
  64. 64.
    Briz O, Serrano MA, Rebollo N et al (2002) Carriers involved in targeting the cytostatic bile acid-cisplatin derivatives cis-diammine-chloro-cholylglycinate-platinum(II) and cis-diammine-bisursodeoxycholate-platinum(II) toward liver cells. Mol Pharmacol 61:853–860CrossRefPubMedGoogle Scholar
  65. 65.
    Li S, Khokhar AR, Perez-Soler R, Huang L (1995) Improved antitumor activity of cis-Bis-neodecanoato-trans-R, R-1, 2- diaminocyclohexaneplatinum (II) entrapped in long-circulating liposomes. Oncol Res 7:611–617PubMedGoogle Scholar
  66. 66.
    Mori A, Wu SP, Han I et al (1996) In vivo antitumor activity of cis-bis-neodecanoato-trans-R, R-1, 2-diaminocyclohexane platinum(II) formulated in long-circulating liposomes. Cancer Chemother Pharmacol 37:435–444CrossRefPubMedGoogle Scholar
  67. 67.
    Barroug A, Glimcher MJ (2002) Hydroxyapatite crystals as a local delivery system for cisplatin: adsorption and release of cisplatin in vitro. J Orthop Res 20:274–280CrossRefPubMedGoogle Scholar
  68. 68.
    Emerich DF, Snodgrass P, Lafreniere D et al (2002) Sustained release chemotherapeutic microspheres provide superior efficacy over systemic therapy and local bolus infusions. Pharm Res 19:1052–1060CrossRefPubMedGoogle Scholar
  69. 69.
    Avgoustakis K, Beletsi A, Panagi Z et al (2002) PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J Control Release 79: 123–135CrossRefPubMedGoogle Scholar
  70. 70.
    Kovacs AF, Turowski B (2002) Chemoembolization of oral and oropharyngeal cancer using a high-dose cisplatin crystal suspension and degradable starch microspheres. Oral Oncol 38:87–95CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Xing-Jie Liang
    • 1
    Email author
  • Chunying Chen
    • 1
  • Yuliang Zhao
    • 1
    • 2
  • Paul C. Wang
  1. 1.Key Laboratory of Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanosciences and Technology of ChinaBeijingChina
  2. 2.Key Laboratory of Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy Physics, Chinese Academy of SciencesBeijingChina

Personalised recommendations