Advertisement

Sample Preparation for STED Microscopy

  • Christian A. Wurm
  • Daniel Neumann
  • Roman Schmidt
  • Alexander Egner
  • Stefan Jakobs
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 591)

Abstract

Since the discovery of the diffraction barrier in the late nineteenth century, it has been commonly accepted that with far-field optical microscopy it is not possible to resolve structural details considerably finer than half the wavelength of light. The emergence of STED microscopy showed that, at least for fluorescence imaging, these limits can be overcome. Since STED microscopy is a far-field technique, in principle, the same sample preparation as for conventional confocal microscopy may be utilized. The increased resolution, however, requires additional precautions to ensure the structural preservation of the specimen. We present robust protocols to generate test samples for STED microscopy. These protocols for bead samples and immunolabeled mammalian cells may be used as starting points to adapt existing labeling strategies for the requirements of sub-diffraction resolution microscopy.

Key words

Fluorescence microscopy Stimulated emission depletion microscopy Nanoscopy Superresolution Immunofluorescence Sample preparation 

References

  1. 1.
    S. W. Hell and J. Wichmann (1994) Breaking the diffraction resolution limit by stimulated emission: Stimulated emission depletion microscopy, Opt. Lett. 19, 780–782.CrossRefPubMedGoogle Scholar
  2. 2.
    S. W. Hell (2003) Toward fluorescence nanoscopy, Nat. Biotechnol. 21, 1347–1355.CrossRefPubMedGoogle Scholar
  3. 3.
    S. W. Hell, M. Dyba and S. Jakobs (2004) Concepts for nanoscale resolution in fluorescence microscopy, Curr. Opin. Neurobiol. 14, 599–609.CrossRefPubMedGoogle Scholar
  4. 4.
    S. W. Hell (2007) Far-field optical nanoscopy, Science 316, 1153–1158.CrossRefPubMedGoogle Scholar
  5. 5.
    M. Fernandez-Suarez and A. Y. Ting (2008) Fluorescent probes for super-resolution imaging in living cells, Nat. Rev. Mol. Cell. Biol. 9, 929–943.CrossRefPubMedGoogle Scholar
  6. 6.
    T. A. Klar and S. W. Hell (1999) Subdiffraction resolution in far-field fluorescence microscopy, Opt. Lett. 24, 954–956.CrossRefPubMedGoogle Scholar
  7. 7.
    T. A. Klar, S. Jakobs, M. Dyba, A. Egner and S. W. Hell (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission, Proc. Natl. Acad. Sci. USA 97, 8206–8210.CrossRefPubMedGoogle Scholar
  8. 8.
    M. Dyba, S. Jakobs and S. W. Hell (2003) Immunofluorescence stimulated emission depletion microscopy, Nat. Biotechnol. 21, 1303–1304.CrossRefPubMedGoogle Scholar
  9. 9.
    V. Westphal, C. M. Blanca, M. Dyba, L. Kastrup and S. W. Hell (2003) Laser-diode-stimulated emission depletion microscopy, Appl. Phys. Lett. 82, 3125–3127.CrossRefGoogle Scholar
  10. 10.
    V. Westphal and S. W. Hell (2005) Nanoscale resolution in the focal plane of an optical microscope, Phys. Rev. Lett. 94, 143903.CrossRefPubMedGoogle Scholar
  11. 11.
    K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn and S. W. Hell (2006) STED-microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis, Nature 440, 935–939.CrossRefPubMedGoogle Scholar
  12. 12.
    R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner and S. W. Hell (2008) Spherical nanosized focal spot unravels the interior of cells, Nat. Methods 5, 539–544.CrossRefPubMedGoogle Scholar
  13. 13.
    C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schonle and S. W. Hell (2008) Direct observation of the nanoscale dynamics of membrane lipids in a living cell, Nature doi:10.1038/nature07596.Google Scholar
  14. 14.
    G. Donnert, J. Keller, C. A. Wurm, S. O. Rizzoli, V. Westphal, A. Schonle, R. Jahn, S. Jakobs, C. Eggeling and S. W. Hell (2007) Two-color far-field fluorescence nanoscopy, Biophys. J. 92, L67–L69.CrossRefPubMedGoogle Scholar
  15. 15.
    R. R. Kellner, C. J. Baier, K. I. Willig, S. W. Hell and F. J. Barrantes (2007) Nanoscale organization of nicotinic acetylcholine receptors revealed by stimulated emission depletion microscopy, Neuroscience 144, 135–143.CrossRefPubMedGoogle Scholar
  16. 16.
    R. J. Kittel, C. Wichmann, T. M. Rasse, W. Fouquet, M. Schmidt, A. Schmid, D. A. Wagh, C. Pawlu, R. R. Kellner, K. I. Willig, S. W. Hell, E. Buchner, M. Heckmann and S. J. Sigrist (2006) Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release, Science 312, 1051–1054.CrossRefPubMedGoogle Scholar
  17. 17.
    J. J. Sieber, K. I. Willig, R. Heintzmann, S. W. Hell and T. Lang (2006) The snare motif is essential for the formation of syntaxin clusters in the plasma membrane, Biophys. J. 90, 2843–2851.CrossRefPubMedGoogle Scholar
  18. 18.
    U. V. Nagerl, K. I. Willig, B. Hein, S. W. Hell and T. Bonhoeffer (2008) Live-cell imaging of dendritic spines by sted microscopy, Proc. Natl. Acad. Sci. USA 105, 18982–18987.CrossRefPubMedGoogle Scholar
  19. 19.
    V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn and S. W. Hell (2008) Video-rate far-field optical nanoscopy dissects synaptic vesicle movement, Science 320, 246–249.CrossRefPubMedGoogle Scholar
  20. 20.
    A. Diaspro (2001) Confocal and two-photon microscopy: foundations, applications and advances, Wiley-Liss, New York.Google Scholar
  21. 21.
    J. B. Pawley (2006) Handbook of biological confocal microscopy, Springer, New York.CrossRefGoogle Scholar
  22. 22.
    A. Longin, C. Souchier, M. Ffrench and P. A. Bryon (1993) Comparison of anti-fading agents used in fluorescence microscopy: Image analysis and laser confocal microscopy study, J. Histochem. Cytochem. 41, 1833–1840.PubMedGoogle Scholar
  23. 23.
    M. Ono, T. Murakami, A. Kudo, M. Isshiki, H. Sawada and A. Segawa (2001) Quantitative comparison of anti-fading mounting media for confocal laser scanning microscopy, J. Histochem. Cytochem. 49, 305–312.PubMedGoogle Scholar
  24. 24.
    K. Valnes and P. Brandtzaeg (1985) Retardation of immunofluorescence fading during microscopy, J. Histochem. Cytochem. 33, 755–761.PubMedGoogle Scholar
  25. 25.
    T. Staudt, M. C. Lang, R. Medda, J. Engelhardt and S. W. Hell (2007) 2,2-thiodiethanol: A new water soluble mounting medium for high resolution optical microscopy, Microsc. Res. Tech. 70, 1–9.CrossRefPubMedGoogle Scholar
  26. 26.
    W. Neupert and J. M. Herrmann (2007) Translocation of proteins into mitochondria, Annu. Rev. Biochem. 76, 723–749.CrossRefPubMedGoogle Scholar
  27. 27.
    S. R. Shi, R. J. Cote and C. R. Taylor (1997) Antigen retrieval immunohistochemistry: Past, present, and future, J. Histochem. Cytochem. 45, 327–343.PubMedGoogle Scholar
  28. 28.
    B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schonle and S. W. Hell (2008) Resolution scaling in STED microscopy, Opt. Expr. 16, 4154–4162.CrossRefGoogle Scholar
  29. 29.
    G. T. Hermanson (2008) Bioconjugate techniques, Elsevier Acad. Press, Amsterdam [u.a.].Google Scholar
  30. 30.
    G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Luhrmann, R. Jahn, C. Eggeling and S. W. Hell (2006) Macromolecular-scale resolution in biological fluorescence microscopy, Proc. Natl. Acad. Sci. USA. 103, 11440–11445.CrossRefPubMedGoogle Scholar
  31. 31.
    D. Fitzner, A. Schneider, A. Kippert, W. Mobius, K. I. Willig, S. W. Hell, G. Bunt, K. Gaus and M. Simons (2006) Myelin basic protein-dependent plasma membrane reorganization in the formation of myelin, Embo J. 25, 5037–5048.CrossRefPubMedGoogle Scholar
  32. 32.
    L. Meyer, D. Wildanger, R. Medda, A. Punge, S. O. Rizzoli, G. Donnert and S. W. Hell (2008) Dual-color STED microscopy at 30-nm focal-plane resolution, Small 4, 1095–1100.CrossRefPubMedGoogle Scholar
  33. 33.
    B. Hein, K. Willig and S. W. Hell (2008) Stimulated emission depletion (STED) nanoscopy of a fluorescent protein labeled organelle inside a living cell, Proc. Natl. Acad. Sci. USA 105, 14271–14276.CrossRefPubMedGoogle Scholar
  34. 34.
    K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs and S. W. Hell (2006) Nanoscale resolution in GFP-based microscopy, Nat. Methods 3, 721–723.CrossRefPubMedGoogle Scholar
  35. 35.
    D. Wildanger, E. Rittweger, L. Kastrup and S. W. Hell (2008) STED microscopy with a supercontinuum laser source, Opt. Expr. 16, 9614–9621.CrossRefGoogle Scholar
  36. 36.
    M. Dyba and S. W. Hell (2002) Focal spots of size lambda/23 open up far-field florescence microscopy at 33 nm axial resolution, Phys. Rev. Lett. 8816, 163901.CrossRefGoogle Scholar
  37. 37.
    K. I. Willig, B. Harke, R. Medda and S. W. Hell (2007) STED microscopy with continuous wave beams, Nat. Methods 4, 915–918.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Christian A. Wurm
    • 1
  • Daniel Neumann
    • 1
  • Roman Schmidt
    • 2
  • Alexander Egner
    • 2
  • Stefan Jakobs
    • 1
  1. 1.Mitochondrial Structure and Dynamics / Department of NanoBiophotonics, Max Planck Institute for Biophysical ChemistryGoettingenGermany
  2. 2.Department of NanoBiphotonics, Max Planck Institute for Biophysical ChemistryGoettingenGermany

Personalised recommendations