Cytoskeleton Methods and Protocols pp 41-68

Part of the Methods in Molecular Biology book series (MIMB, volume 586)

Live-Cell Imaging of the Cytoskeleton and Mitochondrial–Cytoskeletal Interactions in Budding Yeast

  • Theresa C. Swayne
  • Thomas G. Lipkin
  • Liza A. Pon


This chapter describes labeling methods and optical approaches for live-cell imaging of the cytoskeleton and of a specific organelle–cytoskeleton interaction in budding yeast.

Key words

Yeast Mitochondria Fluorescent proteins Immunofluorescence Vital staining Microscopy Live-cell imaging Deconvolution 


  1. 1.
    Doyle, T. and Botstein, D. (1996) Movement of yeast cortical actin cytoskeleton visualized in vivo. Proc Natl Acad Sci U S A 93: 3886–3891CrossRefPubMedGoogle Scholar
  2. 2.
    Yang, H.C. and Pon, L.A. (2002) Actin cable dynamics in budding yeast. Proc Natl Acad Sci U S A 99: 751–756CrossRefPubMedGoogle Scholar
  3. 3.
    Koehler, C.M. (2004) New developments in mitochondrial assembly. Annu Rev Cell Dev Biol 20: 309–335CrossRefPubMedGoogle Scholar
  4. 4.
    Riezman, H., et al. (1983) Import of proteins into mitochondria: a 70 kilodalton outer membrane protein with a large carboxy-terminal deletion is still transported to the outer membrane. EMBO J 2: 2161–2168PubMedGoogle Scholar
  5. 5.
    Gietz, R.D., et al. (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11: 355–360CrossRefPubMedGoogle Scholar
  6. 6.
    Gueldener, U., et al. (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30: e23CrossRefPubMedGoogle Scholar
  7. 7.
    Okamoto, K., Perlman, P.S., and Butow, R.A. (2001) Targeting of green fluorescent protein to mitochondria. Methods Cell Biol 65: 277–283CrossRefPubMedGoogle Scholar
  8. 8.
    Abramoff, M.D., Magelhaes, P.J., and Ram, S.J. (2004) Image processing with imageJ. Biophotonics International 11: 36–42Google Scholar
  9. 9.
    Pawley, J. (2000) The 39 steps: a cautionary tale of quantitative 3-D fluorescence microscopy. Biotechniques 28: 884–886, 888PubMedGoogle Scholar
  10. 10.
    Buttery, S.M., Yoshida, S., and Pellman, D. (2007) Yeast formins Bni1 and Bnr1 utilize different modes of cortical interaction during the assembly of actin cables. Mol Biol Cell 18: 1826–1838CrossRefPubMedGoogle Scholar
  11. 11.
    Vigers, G.P., Coue, M., and McIntosh, J.R. (1988) Fluorescent microtubules break up under illumination. J Cell Biol 107: 1011–1024CrossRefPubMedGoogle Scholar
  12. 12.
    Madania, A., et al. (1999) The Saccharomyces cerevisiae homologue of human Wiskott-Aldrich syndrome protein Las17p interacts with the Arp2/3 complex. Mol Biol Cell 10: 3521–3538PubMedGoogle Scholar
  13. 13.
    Kaksonen, M., Sun, Y., and Drubin, D.G. (2003) A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115: 475–487CrossRefPubMedGoogle Scholar
  14. 14.
    Warren, D.T., et al. (2002) Sla1p couples the yeast endocytic machinery to proteins regulating actin dynamics. J Cell Sci 115: 1703–1715PubMedGoogle Scholar
  15. 15.
    Miliaras, N.B., Park, J.H., and Wendland, B. (2004) The function of the endocytic scaffold protein Pan1p depends on multiple domains. Traffic. 5: 963–978CrossRefPubMedGoogle Scholar
  16. 16.
    Morishita, M. and Engebrecht, J. (2005) End3p-mediated endocytosis is required for spore wall formation in Saccharomyces cerevisiae. Genetics 170: 1561–1574CrossRefPubMedGoogle Scholar
  17. 17.
    Sun, Y., et al. (2007) PtdIns(4,5)P2 turnover is required for multiple stages during clathrin- and actin-dependent endocytic internalization. J Cell Biol 177: 355–367CrossRefPubMedGoogle Scholar
  18. 18.
    Sun, Y., Martin, A.C., and Drubin, D.G. (2006) Endocytic internalization in budding yeast requires coordinated actin nucleation and myosin motor activity. Dev Cell. 11: 33–46CrossRefPubMedGoogle Scholar
  19. 19.
    Vaduva, G., Martin, N.C., and Hopper, A.K. (1997) Actin-binding verprolin is a polarity development protein required for the morphogenesis and function of the yeast actin cytoskeleton. J Cell Biol 139: 1821–1833CrossRefPubMedGoogle Scholar
  20. 20.
    Evangelista, M., et al. (2000) A role for myosin-I in actin assembly through interactions with Vrp1p, Bee1p, and the Arp2/3 complex. J Cell Biol 148: 353–362CrossRefPubMedGoogle Scholar
  21. 21.
    Jonsdottir, G.A. and Li, R. (2004) Dynamics of yeast myosin I: evidence for a possible role in scission of endocytic vesicles. Curr Biol 14: 1604–1609CrossRefPubMedGoogle Scholar
  22. 22.
    Sekiya-Kawasaki, M., et al. (2003) Dynamic phosphoregulation of the cortical actin cytoskeleton and endocytic machinery revealed by real-time chemical genetic analysis. J Cell Biol 162: 765–772CrossRefPubMedGoogle Scholar
  23. 23.
    Huckaba, T.M., et al. (2004) Live cell imaging of the assembly, disassembly, and actin cable-dependent movement of endosomes and actin patches in the budding yeast, Saccharomyces cerevisiae. J Cell Biol 167: 519–530CrossRefPubMedGoogle Scholar
  24. 24.
    Boldogh, I.R., et al. (2001) Arp2/3 complex and actin dynamics are required for actin-based mitochondrial motility in yeast. Proc Natl Acad Sci U S A 98: 3162–3167CrossRefPubMedGoogle Scholar
  25. 25.
    Smith, M.G., Swamy, S.R., and Pon, L.A. (2001) The life cycle of actin patches in mating yeast. J Cell Sci 114: 1505–1513PubMedGoogle Scholar
  26. 26.
    Karpova, T.S., et al. (2000) Role of actin and Myo2p in polarized secretion and growth of Saccharomyces cerevisiae. Mol Biol Cell 11: 1727–1737PubMedGoogle Scholar
  27. 27.
    Waddle, J.A., et al. (1996) Movement of cortical actin patches in yeast. J Cell Biol 132: 861–870CrossRefPubMedGoogle Scholar
  28. 28.
    Winder, S.J., Jess, T., and Ayscough, K.R. (2003) SCP1 encodes an actin-bundling protein in yeast. Biochem J 375: 287–295CrossRefPubMedGoogle Scholar
  29. 29.
    Okreglak, V. and Drubin, D.G. (2007) Cofilin recruitment and function during actin-mediated endocytosis dictated by actin nucleotide state. J Cell Biol 178: 1251–1264CrossRefPubMedGoogle Scholar
  30. 30.
    Riedl, J., et al. (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5: 605–607CrossRefPubMedGoogle Scholar
  31. 31.
    Straight, A.F., et al. (1997) Mitosis in living budding yeast: anaphase A but no metaphase plate. Science 277: 574–578CrossRefPubMedGoogle Scholar
  32. 32.
    Carminati, J.L. and Stearns, T. (1997) Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J Cell Biol 138: 629–641CrossRefPubMedGoogle Scholar
  33. 33.
    Khmelinskii, A., et al. (2007) Cdc14-regulated midzone assembly controls anaphase B. J Cell Biol 177: 981–993CrossRefPubMedGoogle Scholar
  34. 34.
    Carvalho, P., et al. (2004) Cell cycle control of kinesin-mediated transport of Bik1 (CLIP-170) regulates microtubule stability and dynein activation. Dev Cell 6: 815–829CrossRefPubMedGoogle Scholar
  35. 35.
    Shaw, S.L., et al. (1997) Imaging green fluorescent protein fusion proteins in Saccharomyces cerevisiae. Curr Biol 7: 701–704CrossRefPubMedGoogle Scholar
  36. 36.
    Zeng, X., et al. (1999) Slk19p is a centromere protein that functions to stabilize mitotic spindles. J Cell Biol 146: 415–425CrossRefPubMedGoogle Scholar
  37. 37.
    Wang, P.J. and Huffaker, T.C. (1997) Stu2p: A microtubule-binding protein that is an essential component of the yeast spindle pole body. J Cell Biol 139: 1271–1280CrossRefPubMedGoogle Scholar
  38. 38.
    Kahana, J.A., Schnapp, B.J., and Silver, P.A. (1995) Kinetics of spindle pole body separation in budding yeast. Proc Natl Acad Sci U S A 92: 9707–9711CrossRefPubMedGoogle Scholar
  39. 39.
    Marschall, L.G., et al. (1996) Analysis of Tub4p, a yeast gamma-tubulin-like protein: implications for microtubule-organizing center function. J Cell Biol 134: 443–454CrossRefPubMedGoogle Scholar
  40. 40.
    Jaspersen, S.L., et al. (2004) Cdc28/Cdk1 regulates spindle pole body duplication through phosphorylation of Spc42 and Mps1. Dev Cell 7: 263–274CrossRefPubMedGoogle Scholar
  41. 41.
    Adams, I.R. and Kilmartin, J.V. (1999) Localization of core spindle pole body (SPB) components during SPB duplication in Saccharomyces cerevisiae. J Cell Biol 145: 809–823CrossRefPubMedGoogle Scholar
  42. 42.
    Fehrenbacher, K.L., et al. (2004) Live cell imaging of mitochondrial movement along actin cables in budding yeast. Curr Biol 14: 1996–2004CrossRefPubMedGoogle Scholar
  43. 43.
    Okamoto, K., Perlman, P.S., and Butow, R.A. (1998) The sorting of mitochondrial DNA and mitochondrial proteins in zygotes: preferential transmission of mitochondrial DNA to the medial bud. J Cell Biol 142: 613–623CrossRefPubMedGoogle Scholar
  44. 44.
    Mozdy, A.D., McCaffery, J.M., and Shaw, J.M. (2000) Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J Cell Biol 151: 367–380CrossRefPubMedGoogle Scholar
  45. 45.
    Shaner, N.C., Steinbach, P.A., and Tsien, R.Y. (2005) A guide to choosing fluorescent proteins. Nat Methods 2: 905–909CrossRefPubMedGoogle Scholar
  46. 46.
    Longtine, M.S., et al. (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14: 953–961CrossRefPubMedGoogle Scholar
  47. 47.
    Rodrigues, F., et al. (2001) Red fluorescent protein (DsRed) as a reporter in Saccharomyces cerevisiae. J Bacteriol 183: 3791–3794CrossRefPubMedGoogle Scholar
  48. 48.
    Janke, C., et al. (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21: 947–962CrossRefPubMedGoogle Scholar
  49. 49.
    Sheff, M.A. and Thorn, K.S. (2004) Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21: 661–670CrossRefPubMedGoogle Scholar
  50. 50.
    Gauss, R., et al. (2005) New modules for the repeated internal and N-terminal epitope tagging of genes in Saccharomyces cerevisiae. Yeast 22: 1–12CrossRefPubMedGoogle Scholar
  51. 51.
    Simon, V.R., Swayne, T.C., and Pon, L.A. (1995) Actin-dependent mitochondrial motility in mitotic yeast and cell-free systems: identification of a motor activity on the mitochondrial surface. J Cell Biol 130: 345–354CrossRefPubMedGoogle Scholar
  52. 52.
    McConnell, S.J., et al. (1990) Temperature-sensitive yeast mutants defective in mitochondrial inheritance. J Cell Biol 111: 967–976CrossRefPubMedGoogle Scholar
  53. 53.
    Skowronek, P., et al. (1990) Flow cytometry as a tool to discriminate respiratory-competent and respiratory-deficient yeast cells. Curr Genet 18: 265–267CrossRefPubMedGoogle Scholar
  54. 54.
    Nunnari, J., et al. (1997) Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol Biol Cell 8: 1233–1242PubMedGoogle Scholar
  55. 55.
    Nunnari, J., Wong, E.D., Meeusen, S., and Wagner, J.A. (2002) Studying the behavior of mitochondria. Methods Enzymol 351: 381–393CrossRefPubMedGoogle Scholar
  56. 56.
    Westermann, B. and Neupert, W. (2000) Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae. Yeast 16: 1421–1427Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Theresa C. Swayne
    • 1
  • Thomas G. Lipkin
    • 2
  • Liza A. Pon
    • 1
  1. 1.Department of Pathology and Cell Biology, College of Physicians and SurgeonsColumbia UniversityNew YorkUSA
  2. 2.Department of MCD BiologyUniversity of ColoradoBoulderUSA

Personalised recommendations