Purification and Localization of Intraflagellar Transport Particles and Polypeptides

  • Roger D. Sloboda
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 586)

Summary

The growth and maintenance of almost all cilia and flagella are dependent on the proper functioning of the process of intraflagellar transport (IFT). This includes the primary cilia of most cells in humans that are in interphase or the Go phase of the cell cycle. The model system for the study of IFT is the flagella of the bi-flagellate green alga Chlamydomonas. It is in this organism that IFT was first discovered, and genetic data from a Chlamydomonas mutant first linked the process of IFT to polycystic kidney disease in humans. The information given in this chapter addresses procedures to purify IFT particles from flagella and localize these particles, and their associated motor proteins, in flagella using light and electron microscopic approaches.

Key words:

Flagella Cilia Intraflagellar transport Motility Immunofluorescence Immunogold EM 

References

  1. 1.
    R.D. Sloboda, and J.L. Rosenbaum (2007). Making sense of cilia and flagella. J Cell Biol 179 575–582CrossRefPubMedGoogle Scholar
  2. 2.
    K.G. Kozminski, K.A. Johnson, P. Forscher, and J.L. Rosenbaum (1993). A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci U S A 90 5519–5523CrossRefPubMedGoogle Scholar
  3. 3.
    K.G. Kozminski, P.L. Beech, and J.L. Rosenbaum (1995). The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with flagellar membrane. J Cell Biol 131 1517–1527CrossRefPubMedGoogle Scholar
  4. 4.
    K.G. Kozminski (1995). High-resolution imaging of flagella. Methods Cell Biol 47 263–271CrossRefPubMedGoogle Scholar
  5. 5.
    J. Mueller, C.A. Perrone, R. Bower, D.G. Cole, and M.E. Porter (2005). The FLA3 KAP subunit is required for localization of kinesin-2 to the site of flagellar assembly and processive anterograde intraflagellar transport. Mol Biol Cell 16 1341–1354CrossRefPubMedGoogle Scholar
  6. 6.
    G.J. Pazour, B.L. Dickert, and G.B. Witman (1999). The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J Cell Biol 144 473–481CrossRefPubMedGoogle Scholar
  7. 7.
    M.E. Porter, R. Bower, J.A. Knott, P. Byrd, and W. Dentler (1999). Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas. Mol Biol Cell 10 693–712PubMedGoogle Scholar
  8. 8.
    D. Signor, K.P. Wedaman, J.T. Orozco, N.D. Dwyer, C.I. Bargmann, L.S. Rose, and J.M. Scholey (1999). Role of a class DHC1b dynein in retrograde transport of IFT motors and IFT raft particles along cilia, but not dendrites, in chemosensory neurons of living Caenorhabditis elegans. J Cell Biol 147 519–530CrossRefPubMedGoogle Scholar
  9. 9.
    Z. Walther, M. Vashishtha, and J.L. Hall (1994). The Chlamydomonas FLA10 gene encodes a novel kinesin-homologous protein. J Cell Biol 126 175–188CrossRefPubMedGoogle Scholar
  10. 10.
    D.G. Cole, D.R. Diener, A.L. Himelblau, P.L. Beech, J.C. Fuster, and J.L. Rosenbaum (1998). Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol 141 993–1008CrossRefPubMedGoogle Scholar
  11. 11.
    D.G. Cole (2003). The intraflagellar transport machinery of Chlamydomonas reinhardtii. Traffic 4 435–442CrossRefPubMedGoogle Scholar
  12. 12.
    K.A. Johnson, and J.L. Rosenbaum (1992). Polarity of flagellar assembly in Chlamydomonas. J Cell Biol 119 1605–1611CrossRefPubMedGoogle Scholar
  13. 13.
    W.L. Dentler, and J.L. Rosenbaum (1977). Flagellar elongation and shortening in Chlamydomonas. III. Structures attached to the tips of flagellar microtubules and their relationship to the directionality of flagellar microtubule assembly. J Cell Biol 74 747–759CrossRefPubMedGoogle Scholar
  14. 14.
    W.L. Dentler (1980). Structures linking the tips of ciliary and flagellar microtubules to the membrane. J Cell Sci 42 207–220PubMedGoogle Scholar
  15. 15.
    W.S. Sale, and P. Satir (1977). The termination of the central microtubules from the cilia of Tetrahymena pyriformis. Cell Biol Int Rep 1 56–63CrossRefGoogle Scholar
  16. 16.
    D.S. Gorman, and R.P. Levine (1965). Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci U S A 54 1665–1669CrossRefPubMedGoogle Scholar
  17. 17.
    S.H. Hutner, L. Provasoli, Albert Schatz, and C. P. Haskins (1950). Some approaches to the study of the role of metals in the metabolism of microorganisms. Proc Am Philos Soc 94 152–170Google Scholar
  18. 18.
    S. Surzycki (1971). Synchronously Grown Cultures of Chlamydomonas reinhardi. Meth Enzymol 23 67–84CrossRefGoogle Scholar
  19. 19.
    R.D. Sloboda, and L. Howard (2007). Localization of EB1, IFT polypeptides, and kinesin-2 in Chlamydomonas flagellar axonemes via immunogold scanning electron microscopy. Cell Motil Cytoskeleton 64 446–460CrossRefPubMedGoogle Scholar
  20. 20.
    U.K. Laemmli (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 680–685CrossRefPubMedGoogle Scholar
  21. 21.
    D. Best, P.J. Warr, and K. Gull (1981). Influence of the composition of commercial sodium dodecyl sulfate preparations on the separation of alpha- and beta-tubulin during polyacrylamide gel electrophoresis. Anal Biochem 114 281–284CrossRefPubMedGoogle Scholar
  22. 22.
    R.E. Stephens (1998). Electrophoretic resolution of tubulin and tektin subunits by differential interaction with long-chain alkyl sulfates. Anal Biochem 265 356–360CrossRefPubMedGoogle Scholar
  23. 23.
    G. Fairbanks, T.L. Steck, and D.F. Wallach (1971). Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10 2606–2617CrossRefPubMedGoogle Scholar
  24. 24.
    G.E. Hunt (1947). A technique for aeration of sterile liquid culture medium. Science 105 184CrossRefPubMedGoogle Scholar
  25. 25.
    G.B. Witman, K. Carlson, J. Berliner, and J.L. Rosenbaum (1972). Chlamydomonas flagella. I. Isolation and electrophoretic analysis of microtubules, matrix, membranes, and mastigonemes. J Cell Biol 54 507–539CrossRefPubMedGoogle Scholar
  26. 26.
    L.B. Pedersen, S. Geimer, R.D. Sloboda, and J.L. Rosenbaum (2003). The Microtubule plus end-tracking protein EB1 is localized to the flagellar tip and basal bodies in Chlamydomonas reinhardtii. Curr Biol 13 1969–1974CrossRefPubMedGoogle Scholar
  27. 27.
    M.J. Schneider, M. Ulland, and R.D. Sloboda (2008). A protein methylation pathway in Chlamydomonas flagella is active during flagellar resorption. Mol Biol Cell 10 4319–4327CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Roger D. Sloboda
    • 1
  1. 1.Department of Biological SciencesDartmouth CollegeHanoverUSA

Personalised recommendations