Natural Killer Cell Protocols pp 335-352

Part of the Methods in Molecular Biology book series (MIMB, volume 612) | Cite as

Functional Analysis of Human NK Cells by Flow Cytometry

  • Yenan T. Bryceson
  • Cyril Fauriat
  • João M. Nunes
  • Stephanie M. Wood
  • Niklas K. Björkström
  • Eric O. Long
  • Hans-Gustaf Ljunggren
Protocol

Abstract

Natural killer (NK) cells are a subset of lymphocytes that contribute to innate immunity through cytokine secretion and target cell lysis. NK cell function is regulated by a multiplicity of activating and inhibitory receptors. The advance in instrumentation for multi-color flow cytometry and the generation of specific mAbs for different epitopes related to phenotypic and functional parameters have facilitated our understanding of NK cell responses. Here, we provide protocols for flow cytometric evaluation of degranulation and cytokine production by human NK cells from peripheral blood at the single-cell level. In addition to offering insight into the regulation of human NK cell responses, these techniques are applicable to the assessment of various clinical conditions, including the diagnosis of immunodeficiency syndromes.

Key words

Human natural killer cells immunophenotyping polychromatic flow cytometry CD107a lysosomal-associated membrane protein-1 chemokines IFN-γ MIP-1β TNF-α 

References

  1. 1.
    Vivier, E., Tomasello, E., Baratin, M., Walzer, T., and Ugolini, S. Functions of natural killer cells. (2008) Nat Immunol 9, 503–10.CrossRefPubMedGoogle Scholar
  2. 2.
    Raulet, D. H. Interplay of natural killer cells and their receptors with the adaptive immune response. (2004) Nat Immunol 5, 996–1002.CrossRefPubMedGoogle Scholar
  3. 3.
    Strowig, T., Brilot, F., and Munz, C. Noncytotoxic functions of NK cells: direct pathogen restriction and assistance to adaptive immunity. (2008) J Immunol 180, 7785–91.PubMedGoogle Scholar
  4. 4.
    Bryceson, Y. T., and Long, E. O. Line of attack: NK cell specificity and integration of signals. (2008) Curr Opin Immunol 20, 344–352.Google Scholar
  5. 5.
    Peters, P. J., Borst, J., Oorschot, V., Fukuda, M., Krahenbuhl, O., Tschopp, J., Slot, J. W., and Geuze, H. J. Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. (1991) J Exp Med 173, 1099–109.CrossRefPubMedGoogle Scholar
  6. 6.
    Bossi, G., and Griffiths, G. M. Degranulation plays an essential part in regulating cell surface expression of Fas ligand in T cells and natural killer cells. (1999) Nat Med 5, 90–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Alter, G., Malenfant, J. M., and Altfeld, M. CD107a as a functional marker for the identification of natural killer cell activity. (2004) J Immunol Methods 294, 15–22.CrossRefPubMedGoogle Scholar
  8. 8.
    Bryceson, Y. T., March, M. E., Barber, D. F., Ljunggren, H. G., and Long, E. O. Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells. (2005) J Exp Med 202, 1001–12.CrossRefPubMedGoogle Scholar
  9. 9.
    Marcenaro, S., Gallo, F., Martini, S., Santoro, A., Griffiths, G. M., Arico, M., Moretta, L., and Pende, D. Analysis of natural killer-cell function in familial hemophagocytic lymphohistiocytosis (FHL): defective CD107a surface expression heralds Munc13-4 defect and discriminates between genetic subtypes of the disease. (2006) Blood 108, 2316–23.CrossRefPubMedGoogle Scholar
  10. 10.
    Bryceson, Y. T., Rudd, E., Zheng, C., Edner, J., Ma, D., Wood, S. M., Bechensteen, A. G., Boelens, J. J., Celkan, T., Farah, R. A., Hultenby, K., Winiarski, J., Roche, P. A., Nordenskjold, M., Henter, J. I., Long, E. O., and Ljunggren, H. G. Defective cytotoxic lymphocyte degranulation in syntaxin-11 deficient familial hemophagocytic lymphohistiocytosis 4 (FHL4) patients. (2007) Blood 110, 1906–15.CrossRefPubMedGoogle Scholar
  11. 11.
    Gonzalez, V. D., Björkström, N. K., Malmberg, K. J., Moll, M., Kuylenstierna, C., Michaëlsson, J., Ljunggren, H. G., and Sandberg, J. K. Application of nine-color flow cytometry for detailed studies of the phenotypic complexity and functional heterogeneity of human lymphocyte subsets. (2008) J Immunol Methods 330, 64–74.CrossRefPubMedGoogle Scholar
  12. 12.
    Rudd, E., Bryceson, Y. T., Zheng, C., Edner, J., Wood, S. M., Ramme, K., Gavhed, S., Gurgey, A., Hellebostad, M., Bechensteen, A., Ljunggren, H. G., Fadeel, B., Nordenskjold, M., and Henter, J. I. Spectrum, and clinical and functional implications of UNC13D mutations in familial haemophagocytic lymphohistiocytosis. (2008) J Med Genet 45, 134–41.CrossRefPubMedGoogle Scholar
  13. 13.
    Roederer, M. Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. (2001) Cytometry 45, 194–205.CrossRefPubMedGoogle Scholar
  14. 14.
    Lamoreaux, L., Roederer, M., and Koup, R. Intracellular cytokine optimization and standard operating procedure. (2006) Nat Protoc 1, 1507–16.CrossRefPubMedGoogle Scholar
  15. 15.
    Bryceson, Y. T., March, M. E., Ljunggren, H. G., and Long, E. O. Activation, coactivation, and costimulation of resting human natural killer cells. (2006) Immunol Rev 214, 73–91.CrossRefPubMedGoogle Scholar
  16. 16.
    Ljunggren, H. G., and Malmberg, K. J. Prospects for the use of NK cells in immunotherapy of human cancer. (2007) Nat Rev Immunol 7, 329–39.CrossRefPubMedGoogle Scholar
  17. 17.
    Betts, M. R., Brenchley, J. M., Price, D. A., De Rosa, S. C., Douek, D. C., Roederer, M., and Koup, R. A. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. (2003) J Immunol Methods 281, 65–78.CrossRefPubMedGoogle Scholar
  18. 18.
    Enders, A., Zieger, B., Schwarz, K., Yoshimi, A., Speckmann, C., Knoepfle, E. M., Kontny, U., Muller, C., Nurden, A., Rohr, J., Henschen, M., Pannicke, U., Niemeyer, C., Nurden, P., and Ehl, S. Lethal hemophagocytic lymphohistiocytosis in Hermansky-Pudlak syndrome type II. (2006) Blood 108, 81–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Andre, P., and Anfossi, N. Clinical analysis of human natural killer cells. (2008) Methods Mol Biol 415, 291–300.CrossRefPubMedGoogle Scholar
  20. 20.
    Anfossi, N., Andre, P., Guia, S., Falk, C. S., Roetynck, S., Stewart, C. A., Breso, V., Frassati, C., Reviron, D., Middleton, D., Romagne, F., Ugolini, S., and Vivier, E. Human NK cell education by inhibitory receptors for MHC class I. (2006) Immunity 25, 331–42.CrossRefPubMedGoogle Scholar
  21. 21.
    Perfetto, S. P., Chattopadhyay, P. K., Lamoreaux, L., Nguyen, R., Ambrozak, D., Koup, R. A., and Roederer, M. Amine reactive dyes: an effective tool to discriminate live and dead cells in polychromatic flow cytometry. (2006) J Immunol Methods 313, 199–208.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yenan T. Bryceson
    • 1
  • Cyril Fauriat
    • 1
  • João M. Nunes
    • 1
  • Stephanie M. Wood
    • 1
  • Niklas K. Björkström
    • 1
  • Eric O. Long
    • 2
  • Hans-Gustaf Ljunggren
    • 1
  1. 1.Center for Infectious Medicine, Department of MedicineKarolinska Institutet, Karolinska University Hospital HuddingeStockholmSweden
  2. 2.Laboratory of ImmunogeneticsNational Institute of Allergy and Infectious Diseases, National Institutes of HealthRockvilleUSA

Personalised recommendations