Expression of Membrane Proteins in Drosophila Melanogaster S2 Cells: Production and Analysis of a EGFP-Fused G Protein-Coupled Receptor as a Model

Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 601)

Abstract

In the process of selecting an appropriate host for the heterologous expression of functional eukaryotic membrane proteins, Drosophila S2 cells, although not yet fully explored, appear as a valuable alternative to mammalian cell lines or other virus-infected insect cell systems. This nonlytic, plasmid-based system actually combines several major physiological and bioprocess advantages that make it a highly potential and scalable cellular tool for the production of membrane proteins in a variety of applications, including functional characterization, pharmacological profiling, molecular simulations, structural analyses, or generation of vaccines. We present here a series of protocols and hints that would serve the successful expression of membrane proteins in S2 cells, using an enhanced green fluorescent protein (EGFP)/G protein-coupled receptor (EGFP-GPCR) as a model.

Key words

Drosophila S2 cells heterologous expression membrane proteins recombinant GPCR 

References

  1. 1.
    Pereira CA (2008) Foreword for the special issue: heterologous gene expression in Drosophila melanogaster cells. Cytotechnology 57:9Google Scholar
  2. 2.
    Benting J, Lecat S, Zacchetti D, Simons K (2000) Protein expression in Drosophila Schneider cells. Anal Biochem 278:59–68CrossRefPubMedGoogle Scholar
  3. 3.
    Percival MD, Bastien L, Griffin PR, Kargman S, Ouellet M, O’Neill GP (1997) Investigation of human cyclooxygenase-2 glycosylation heterogeneity and protein expression in insect and mammalian cell expression systems. Protein Exp Purif 9:388–398CrossRefGoogle Scholar
  4. 4.
    Astray RM, Augusto E, Yokomizo AY, Pereira CA (2008) Analytical approach for the extraction of recombinant membrane viral glycoprotein from stably transfected Drosophila melanogaster cells. Biotechnol J 3:98–103CrossRefPubMedGoogle Scholar
  5. 5.
    Yokomizo AY, Jorge SA, Astray RM, Fernandes I, Ribeiro OG, Horton DS, Tonso A, Tordo N, Pereira CA (2007) Rabies virus glycoprotein expression in Drosophila S2 cells I. Functional recombinant protein in stable co-transfected cell line. Biotechnol J 2:102–109CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang F, Ma W, Zhang L, Aasa-Chapman M, Zhang H (2007) Expression of particulate-form of Japanese encephalitis virus envelope protein in a stably transfected Drosophila cell line. Virol J 26:4–17Google Scholar
  7. 7.
    Ohara T, Ohashi-Kobayashi A, Maeda M (2008) Biochemical characterization of transporter associated with antigen processing (TAP)-like (ABCB9) expressed in insect cells. Biol Pharm Bull 31:1–5CrossRefPubMedGoogle Scholar
  8. 8.
    Aumiller JJ, Jarvis DL (2002) Expression and functional characterization of a nucleotide sugar transporter from Drosophila melanogaster: relevance to protein glycosylation in insect cell expression systems. Protein Exp Purif 26:438–448CrossRefGoogle Scholar
  9. 9.
    Pantazis A, Segaran A, Liu CH, Nikolaev A, Rister J, Thum AS, Roeder T, Semenov E, Juusola M, Hardie RC (2008) Distinct roles for two histamine receptors (hclA and hclB) at the Drosophila photoreceptor synapse. J Neurosci 28:7250–7259CrossRefPubMedGoogle Scholar
  10. 10.
    Bass C, Lansdell SJ, Millar NS, Schroeder I, Turberg A, Field LM, Williamson MS (2006) Molecular characterisation of nicotinic acetylcholine receptor subunits from the cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae). Insect Biochem Mol Biol 36:86–96CrossRefPubMedGoogle Scholar
  11. 11.
    Huang Y, Williamson MS, Devonshire AL, Windass JD, Lansdell SJ, Millar NS (1999) Molecular characterization and imidacloprid selectivity of nicotinic acetylcholine receptor subunits from the peach-potato aphid Myzus persicae. J Neurochem 73:380–389CrossRefPubMedGoogle Scholar
  12. 12.
    Huang Y, Williamson MS, Devonshire AL, Windass JD, Lansdell SJ, Millar NS (2000) Cloning, heterologous expression and co-assembly of Mpbeta1, a nicotinic acetylcholine receptor subunit from the aphid Myzus persicae. Neurosci Lett 284:116–120CrossRefPubMedGoogle Scholar
  13. 13.
    Yagodin S, Hardie RC, Lansdell SJ, Millar NS, Mason WT, Sattelle DB (1998) Thapsigargin and receptor-mediated activation of Drosophila TRPL channels stably expressed in a Drosophila S2 cell line. Cell Calcium 23:219–228CrossRefPubMedGoogle Scholar
  14. 14.
    Buckingham SD, Matsuda K, Hosie AM, Baylis HA, Squire MD, Lansdell SJ, Millar NS, Sattelle B (1996) Wild-type and insecticide-resistant homo-oligomeric GABA receptors of Drosophila melanogaster stably expressed in a Drosophila cell line. Neuropharmacology 35:1393–1401CrossRefPubMedGoogle Scholar
  15. 15.
    Brillet K, Perret BG, Klein V, Pattus F, Wagner R (2008) Using EGFP fusions to monitor the functional expression of GPCRs in the Drosophila Schneider 2 cells. Cytotechnology 57:101–109CrossRefPubMedGoogle Scholar
  16. 16.
    Brillet K, da Conceição MM, Pattus F, Pereira CA (2006) Bioprocess parameters of cell growth and human mu opioid receptor expression in recombinant Drosophila S2 cell cultures in a bioreactor. Bioprocess Biosyst Eng 28:291–293CrossRefPubMedGoogle Scholar
  17. 17.
    De Rivoyre M, Ruel L, Varjosalo M, Loubat A, Bidet M, Thérond P, Mus-Veteau I (2006) Human receptors patched and smoothened partially transduce hedgehog signal when expressed in Drosophila cells. J Biol Chem 281:28584–28595CrossRefPubMedGoogle Scholar
  18. 18.
    Perret BG, Wagner R, Lecat S, Brillet K, Rabut G, Bucher B, Pattus F (2003) Expression of EGFP-amino-tagged human mu opioid receptor in Drosophila Schneider 2 cells: a potential expression system for large-scale production of G-protein coupled receptors. Protein Exp Purif 31:123–132CrossRefGoogle Scholar
  19. 19.
    Schetz JA, Kim OJ, Sibley DR (2003) Pharmacological characterization of mammalian D1 and D2 dopamine receptors expressed in Drosophila Schneider-2 cells. J Recept Signal Transduct Res 23:99–109CrossRefPubMedGoogle Scholar
  20. 20.
    Cordova D, Delpech VR, Sattelle DB, Rauh JJ (2003) Spatiotemporal calcium signaling in a Drosophila melanogaster cell line stably expressing a Drosophila muscarinic acetylcholine receptor. Invert Neurosci 5: 19–28CrossRefPubMedGoogle Scholar
  21. 21.
    Aldecoa A, Gujer R, Fischer JA, Born W (2000) Mammalian calcitonin receptor-like receptor/receptor activity modifying protein complexes define calcitonin gene-related peptide and adrenomedullin receptors in Drosophila Schneider 2 cells. FEBS Lett 471:156–160CrossRefPubMedGoogle Scholar
  22. 22.
    Torfs H, Oonk HB, Broeck JV, Poels J, Van Poyer W, De Loof A, Guerrero F, Meloen RH, Akerman K, Nachman RJ (2001) Pharmacological characterization of STKR, an insect G protein-coupled receptor for tachykinin-like peptides. Arch Insect Biochem Physiol 48:39–49CrossRefPubMedGoogle Scholar
  23. 23.
    Torfs H, Shariatmadari R, Guerrero F, Parmentier M, Poels J, Van Poyer W, Swinnen E, De Loof A, Akerman K, Vanden Broeck J (2000) Characterization of a receptor for insect tachykinin-like peptide agonists by functional expression in a stable Drosophila Schneider 2 cell line. J Neurochem 74:2182–2189CrossRefPubMedGoogle Scholar
  24. 24.
    Wang YK, Samos CH, Peoples R, Pérez-Jurado LA, Nusse R, Francke U (1997) A novel human homologue of the Drosophila frizzled wnt receptor gene binds wingless protein and is in the Williams syndrome deletion at 7q11.23. Hum Mol Genet 6:465–472CrossRefPubMedGoogle Scholar
  25. 25.
    Vanden Broeck J, Vulsteke V, Huybrechts R, De Loof A (1995) Characterization of a cloned locust tyramine receptor cDNA by functional expression in permanently transformed Drosophila S2 cells. J Neurochem 64:2387–2395CrossRefPubMedGoogle Scholar
  26. 26.
    Millar NS, Baylis HA, Reaper C, Bunting R, Mason WT, Sattelle DB (1995) Functional expression of a cloned Drosophila muscarinic acetylcholine receptor in a stable Drosophila cell line. J Exp Biol 198:1843–1850PubMedGoogle Scholar
  27. 27.
    Tota MR, Xu L, Sirotina A, Strader CD, Graziano MP (1995) Interaction of [fluorescein-Trp25]glucagon with the human glucagon receptor expressed in Drosophila Schneider 2 cells. J Biol Chem 270:26466–26472CrossRefPubMedGoogle Scholar
  28. 28.
    Bernard AR, Kost TA, Overton L, Cavegn C, Young J, Bertrand M, Yahia-Cherif Z, Chabert C, Mills A (1994) Recombinant protein expression in a Drosophila cell line: comparison with the baculovirus system. Cytotechnology 15:139–144CrossRefPubMedGoogle Scholar
  29. 29.
    Wossning T, Reth M (2004) B cell antigen receptor assembly and Syk activation in the S2 cell reconstitution system. Immunol Lett 92:67–73CrossRefPubMedGoogle Scholar
  30. 30.
    Schneider I (1972) Cell lines derived from late embryonic stages of drosophila melanogaster. J Embryol Exp Morphol 27:363–365Google Scholar
  31. 31.
    Rämet M, Manfruelli P, Pearson A, Mathey-Prevot B, Ezekowitz RA (2002) Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416:644–648CrossRefPubMedGoogle Scholar
  32. 32.
    Sondergaard L (1996) Drosophila cells grow to high densities in a bioreactor. Biotechnol Tech 10:161–166CrossRefGoogle Scholar
  33. 33.
    Yagodin S, Hoyland J, Mason WT, Miyake T, Sattelle DB (1997) Imaging of intracellular Ca2+, pH and Cl-1 transients in Drosophila cell lines. Bioimages 5:111–118Google Scholar
  34. 34.
    Angelichio ML, Beck JA, Johansen H, Ivey-Hoyle M (1991) Comparison of several promoters and polyadenylation signals for use in heterologous gene expression in cultured Drosophila cells. Nucleic Acids Res 19:5037–5043CrossRefPubMedGoogle Scholar
  35. 35.
    Bunch TA, Grinblat Y, Goldstein LS (1988) Characterization and use of the Drosophila metallothionein promoter in cultured Drosophila melanogaster cells. Nucleic Acids Res 16:1043–1061CrossRefPubMedGoogle Scholar
  36. 36.
    Kirkpatrick RB, Matico RE, McNulty DE, Strickler JE, Rosenberg M (1995) An abundantly secreted glycoprotein from Drosophila melanogaster is related to mammalian secretory proteins produced in rheumatoid tissues and by activated macrophages. Gene 153:147–154CrossRefPubMedGoogle Scholar
  37. 37.
    Lee DF, Chen CC, Hsu TA, Juang JL (2000) A baculovirus superinfection system: efficient vehicle for gene transfer into Drosophila S2 cells. J Virol 74:11873–11880CrossRefPubMedGoogle Scholar
  38. 38.
    Kim KR, Kim YK, Cha HJ (2008) Recombinant baculovirus-based multiple protein expression platform for Drosophila S2 cell culture. J Biotechnol 133:116–122CrossRefPubMedGoogle Scholar
  39. 39.
    Iwaki T, Castellino FJ (2008) A single plasmid transfection that offers a significant advantage associated with puromycin selection in Drosophila Schneider S2 cells expressing heterologous proteins. Cytotechnology 57:45–49CrossRefPubMedGoogle Scholar
  40. 40.
    Jorge SAC, Santos AS, Spina A, Pereira CA (2008) Expression of the Hepatitis B virus surface antigen in Drosophila S2 cells. Cytotechnology 57:51–59CrossRefPubMedGoogle Scholar
  41. 41.
    Park JH, Kim HY, Han KH, Chung IS (1999) Optimization of transfection conditions for expression of green fluorescent protein in Drosophila melanogaster S2 cells. Enzyme Microb Technol 25:558–563CrossRefGoogle Scholar
  42. 42.
    Rodas VM, Marques FH, Honda MT, Soares DM, Jorge SAC, Antoniazzi MM, Medugno C, Castro ME, Ribeiro BM, Souza ML, Tonso A, Pereira CA (2005) Cell culture derived AgMNPV bioinsecticide. Biological constraints and bioprocess issues. Cytotechnology 48:27–39CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Karl Brillet
    • 1
  • Carlos A. Pereira
    • 2
  • Renaud Wagner
    • 1
  1. 1.Dpt Récepteurs et des Protéines MembranairesIllkirchFrance
  2. 2.Laboratório de Imunologia ViralInstituto ButantanSão PauloBrasil

Personalised recommendations