Assays for the Preferential Binding of Human Topoisomerase I to Supercoiled DNA

  • Zheng Yang
  • James J. Champoux
Part of the Methods in Molecular Biology™ book series (MIMB, volume 582)


To assay the preferential binding of eukaryotic type IB topoisomerases to supercoiled DNA, two methods are described that make use of a catalytically inactive mutant form of the enzyme. In the gel shift assay, the preference for binding to supercoiled plasmid DNA is detected in the presence of linear and nicked forms of the same DNA by a reduction in the mobility of the supercoiled plasmid during electrophoresis in agarose. The more quantitative filter binding assay compares the ability of nicked and supercoiled forms of the circular DNA to compete for the binding of a 3H-labeled nicked DNA to the topoisomerase where the enzyme–DNA complexes are quantitated by the retention of the labeled DNA on a nitrocellulose membrane.

Key words

Topoisomerases supercoiled DNA plasmid DNA nicked DNA gel shift assay filter binding assay nitrocellulose filters 



This work was supported by the National Institutes of Health Grant GM49156.


  1. 1.
    Champoux, J. J. (2001) DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70, 369–413.PubMedCrossRefGoogle Scholar
  2. 2.
    Koster, D. A., Croquette, V., Dekker, C., Shuman, S. and Dekker, N. H. (2005) Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase Iβ. Nature 434, 671–674.PubMedCrossRefGoogle Scholar
  3. 3.
    Muller, M. T. (1985) Quantitation of eukaryotic topoisomerase I reactivity with DNA. Preferential cleavage of supercoiled DNA. Biochim Biophys Acta 824, 263–267.PubMedCrossRefGoogle Scholar
  4. 4.
    Zechiedrich, E. L. and Osheroff, N. (1990) Eukaryotic topoisomerases recognize nucleic acid topology by preferentially interacting with DNA crossovers. EMBO J 9, 4555–4562.PubMedGoogle Scholar
  5. 5.
    Madden, K. R., Stewart, L. and Champoux, J. J. (1995) Preferential binding of human topoisomerase I to superhelical DNA. EMBO J 14, 5399–5409.PubMedGoogle Scholar
  6. 6.
    Stros, M. and Muselikova, E. (2000) A role of basic residues and the putative intercalating phenylalanine of the HMG-1 box B in DNA supercoiling and binding to four-way DNA junctions. J Biol Chem 275, 35699–35707.PubMedCrossRefGoogle Scholar
  7. 7.
    Grasser, K. D., Teo, S. H., Lee, K. B., Broadhurst, R. W., Rees, C., Hardman, C. H. and Thomas, J. O. (1998) DNA-binding properties of the tandem HMG boxes of high-mobility-group protein 1 (HMG1). Eur J Biochem 253, 787–795.PubMedCrossRefGoogle Scholar
  8. 8.
    Payet, D. and Travers, A. (1997) The acidic tail of the high mobility group protein HMG-D modulates the structural selectivity of DNA binding. J Mol Biol 266, 66–75.PubMedCrossRefGoogle Scholar
  9. 9.
    Palecek, E., Brazdova, M., Brazda, V., Palecek, J., Billova, S., Subramaniam, V. and Jovin, T. M. (2001) Binding of p53 and its core domain to supercoiled DNA. Eur J Biochem 268, 573–581.PubMedCrossRefGoogle Scholar
  10. 10.
    Mazur, S. J., Sakaguchi, K., Appella, E., Wang, X. W., Harris, C. C. and Bohr, V. A. (1999) Preferential binding of tumor suppressor p53 to positively or negatively supercoiled DNA involves the C-terminal domain. J Mol Biol 292, 241–249.PubMedCrossRefGoogle Scholar
  11. 11.
    Hinkle, D. C. and Chamberlin, M. J. (1972) Studies of the binding of Escherichia coli RNA polymerase to DNA. I. The role of sigma subunit in site selection. J Mol Biol 70, 157–185.PubMedCrossRefGoogle Scholar
  12. 12.
    Stewart, L. and Champoux, J. J. (1996) Purification of baculovirus expressed human DNA topoisomerase I. In DNA Topoisomerase Protocols, Volume 1: DNA Topology and Enzymes (Bjornsti, M.-A. and Osheroff, N., eds.), Vol. 94, pp. 223–234. Humana Press, Totowa, NJ.CrossRefGoogle Scholar
  13. 13.
    Yang, Z. and Champoux, J. J. (2002) Reconstitution of enzymatic activity by the association of the cap and catalytic domains of human topoisomerase I. J Biol Chem 277, 30815–30823.PubMedCrossRefGoogle Scholar
  14. 14.
    Hirt, B. (1967) Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol 26, 365–369.PubMedCrossRefGoogle Scholar
  15. 15.
    Shortle, D., Grisafi, P., Benkovic, S. J. and Botstein, D. (1982) Gap misrepair mutagenesis: efficient site-directed induction of transition, transversion, and frameshift mutations in vitro. Proc Natl Acad Sci USA 79, 1588–1592.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Zheng Yang
    • 1
  • James J. Champoux
    • 1
  1. 1.Department of MicrobiologyUniversity of WashingtonSeattleUSA

Personalised recommendations