Lipidomics pp 339-368 | Cite as

Bioinformatics Strategies for the Analysis of Lipids

  • Craig E. Wheelock
  • Susumu Goto
  • Laxman Yetukuri
  • Fabio Luiz D’Alexandri
  • Christian Klukas
  • Falk Schreiber
  • Matej Orešič
Part of the Methods in Molecular Biology™ book series (MIMB, volume 580)


Owing to their importance in cellular physiology and pathology as well as to recent technological advances, the study of lipids has reemerged as a major research target. However, the structural diversity of lipids presents a number of analytical and informatics challenges. The field of lipidomics is a new postgenome discipline that aims to develop comprehensive methods for lipid analysis, necessitating concomitant developments in bioinformatics. The evolving research paradigm requires that new bioinformatics approaches accommodate genomic as well as high-level perspectives, integrating genome, protein, chemical and network information. The incorporation of lipidomics information into these data structures will provide mechanistic understanding of lipid functions and interactions in the context of cellular and organismal physiology. Accordingly, it is vital that specific bioinformatics methods be developed to analyze the wealth of lipid data being acquired. Herein, we present an overview of the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and application of its tools to the analysis of lipid data. We also describe a series of software tools and databases (KGML-ED, VANTED, MZmine, and LipidDB) that can be used for the processing of lipidomics data and biochemical pathway reconstruction, an important next step in the development of the lipidomics field.

Key words

Bioinformatics Lipid Lipidomics Pathway reconstruction KEGG KGML-ED VANTED MZmine LipidDB 



This research was supported by the Åke Wibergs Stiftelse, the Fredrik and Ingrid Thurings Stiftelse, and The Royal Swedish Academy of Sciences. C.E.W. was supported by a fellowship from the Centre for Allergy Research.


  1. 1.
    Fahy E, Subramaniam S, Brown HA, et al. (2005) A comprehensive classification system for lipids. J Lipid Res 46, 839–861.CrossRefPubMedGoogle Scholar
  2. 2.
    van Meer G. (2005) Cellular lipidomics. Embo J 24, 3159–3165.CrossRefPubMedGoogle Scholar
  3. 3.
    Wenk MR. (2006) Lipidomics of host-pathogen interactions. FEBS Lett 580, 5541–5551.CrossRefPubMedGoogle Scholar
  4. 4.
    Adibhatla RM, Hatcher JF. (2007) Role of lipids in brain injury and diseases. Future Lipidol 2, 403–422.CrossRefPubMedGoogle Scholar
  5. 5.
    Wymann MP, Schneiter R. (2008) Lipid signalling in disease. Nat Rev Mol Cell Biol 9, 162–176.CrossRefPubMedGoogle Scholar
  6. 6.
    Wenk MR. (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4, 594–610.CrossRefPubMedGoogle Scholar
  7. 7.
    Mattila I, Seppanen-Laakso T, Suortti T, Oresic M. (2008) Application of lipidomics and metabolomics to the study of adipose tissue. Methods Mol Biol 456, 123–130.CrossRefPubMedGoogle Scholar
  8. 8.
    Jia L, Wang C, Zhao S, Lu X, Xu G. (2007) Metabolomic identification of potential phospholipid biomarkers for chronic glomerulonephritis by using high performance liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 860, 134–140.CrossRefPubMedGoogle Scholar
  9. 9.
    Roberts LD, McCombie G, Titman CM, Griffin JL. (2008) A matter of fat: an introduction to lipidomic profiling methods. J Chromatogr B Analyt Technol Biomed Life Sci 871, 174–181.CrossRefPubMedGoogle Scholar
  10. 10.
    Han X, Gross RW. (2005) Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24, 367–412.CrossRefPubMedGoogle Scholar
  11. 11.
    Yetukuri L, Ekroos K, Vidal-Puig A, Oresic M. (2008) Informatics and computational strategies for the study of lipids. Mol Biosyst 4, 121–127.CrossRefPubMedGoogle Scholar
  12. 12.
    Baker CJ, Kanagasabai R, Ang WT, Veeramani A, Low HS, Wenk MR. (2008) Towards ontology-driven navigation of the lipid bibliosphere. BMC Bioinformatics 9 Suppl 1, S5.CrossRefPubMedGoogle Scholar
  13. 13.
    Schmelzer K, Fahy E, Subramaniam S, Dennis EA. (2007) The lipid maps initiative in lipidomics. Methods Enzymol 432, 171–183.CrossRefPubMedGoogle Scholar
  14. 14.
    van Meer G, Leeflang BR, Liebisch G, Schmitz G, Goni FM. (2007) The European lipidomics initiative: enabling technologies. Methods Enzymol 432, 213–232.CrossRefPubMedGoogle Scholar
  15. 15.
    Taguchi R, Nishijima M, Shimizu T. (2007) Basic analytical systems for lipidomics by mass spectrometry in Japan. Methods Enzymol 432, 185–211.CrossRefPubMedGoogle Scholar
  16. 16.
    Watanabe K, Yasugi E, Oshima M. (2000) How to search the glycolipid data in LIPIDBANK for Web: the newly developed lipid database. Japan Trend Glycosci Glycotechnol 12, 175–184.Google Scholar
  17. 17.
    Fahy E, Sud M, Cotter D, Subramaniam S. (2007) LIPID MAPS online tools for lipid research. Nucleic Acids Res 35, W606–612.CrossRefPubMedGoogle Scholar
  18. 18.
    Sud M, Fahy E, Cotter D, et al. (2007) LMSD: LIPID MAPS structure database. Nucleic Acids Res 35, D527–532.CrossRefPubMedGoogle Scholar
  19. 19.
    Cotter D, Maer A, Guda C, Saunders B, Subramaniam S. (2006) LMPD: LIPID MAPS proteome database. Nucleic Acids Res 34, D507–510.CrossRefPubMedGoogle Scholar
  20. 20.
    Kanehisa M, Araki M, Goto S, et al. (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36, D480–484.CrossRefPubMedGoogle Scholar
  21. 21.
    Kanehisa M. (1997) A database for post-genome analysis. Trends Genet 13, 375–376.CrossRefPubMedGoogle Scholar
  22. 22.
    Fleischmann RD, Adams MD, White O, et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512.CrossRefPubMedGoogle Scholar
  23. 23.
    Goto S, Nishioka T, Kanehisa M. (1998) LIGAND: chemical database for enzyme reactions. Bioinformatics 14, 591–599.CrossRefPubMedGoogle Scholar
  24. 24.
    Goto S, Okuno Y, Hattori M, Nishioka T, Kanehisa M. (2002) LIGAND: database of chemical compounds and reactions in biological pathways. Nucleic Acids Res 30, 402–404.CrossRefPubMedGoogle Scholar
  25. 25.
    Hashimoto K, Yoshizawa AC, Okuda S, Kuma K, Goto S, Kanehisa M. (2008) The repertoire of desaturases and elongases reveals fatty acid variations in 56 eukaryotic genomes. J Lipid Res 49, 183–191.CrossRefPubMedGoogle Scholar
  26. 26.
    Smith TF, Waterman MS. (1981) Identification of common molecular subsequences. J Mol Biol 147, 195–197.CrossRefPubMedGoogle Scholar
  27. 27.
    Fujibuchi W, Goto S, Migimatsu H, et al. (1998) DBGET/LinkDB: an integrated database retrieval system. Pac Symp Biocomput 683–694.Google Scholar
  28. 28.
    Klukas C, Schreiber F. (2007) Dynamic exploration and editing of KEGG pathway diagrams. Bioinformatics 23, 344–350.CrossRefPubMedGoogle Scholar
  29. 29.
    Suderman M, Hallett M. (2007) Tools for visually exploring biological networks. Bioinformatics 23, 2651–2659.CrossRefPubMedGoogle Scholar
  30. 30.
    Junker BH, Klukas C, Schreiber F. (2006) VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics 7, 109.CrossRefPubMedGoogle Scholar
  31. 31.
    Klukas C, Junker BH, Schreiber F. (2006) The VANTED software system for transcriptomics, proteomics and metabolomics analysis. J Pestic Sci 31, 289–292.CrossRefGoogle Scholar
  32. 32.
    Yoshida K, Kobayashi K, Miwa Y, et al. (2001) Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Nucleic Acids Res 29, 683–692.CrossRefPubMedGoogle Scholar
  33. 33.
    Fahy E, Cotter D, Byrnes R, et al. (2007) Bioinformatics for lipidomics. Methods Enzymol 432, 247–273.CrossRefPubMedGoogle Scholar
  34. 34.
    Lu Y, Hong S, Serhan C. (2006) Lipid mediator informatics-lipidomics: novel pathways in mapping resolution. AAPS Journal 8, E284–E297.CrossRefPubMedGoogle Scholar
  35. 35.
    Ejsing CS, Duchoslav E, Sampaio J, et al. (2006) Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. Anal Chem 78, 6202–6214.CrossRefPubMedGoogle Scholar
  36. 36.
    Kurvinen J-P, Aaltonan J, Kuksis A, H. Kallio. (2002) Software algorithm for automatic interpretation of mass spectra of glycerolipids. Rapid Commun Mass Spectrom 16, 1812–18201.CrossRefPubMedGoogle Scholar
  37. 37.
    Hermansson M, Uphoff A, Kakela R, Somerharju P. (2005) Automated quantitative analysis of complex lipidomes by liquid chromatography/mass spectrometry. Anal Chem 77, 2166–2175.CrossRefPubMedGoogle Scholar
  38. 38.
    Katajamaa M, Orešič M. (2005) Processing methods for differential analysis of LC/MS profile data. BMC Bioinformatics 6, 179–190.CrossRefPubMedGoogle Scholar
  39. 39.
    Yetukuri L, Katajamaa M, Medina-Gomez G, Seppanen-Laakso T, Vidal-Puig A, Orešič M. (2007) Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis. BMC Systems Biology 1, 12.CrossRefPubMedGoogle Scholar
  40. 40.
    Katajamaa M, Miettinen J, Orešič M. (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22, 634–636.CrossRefPubMedGoogle Scholar
  41. 41.
    Krieger CJ, Zhang P, Mueller LA, et al. (2004) MetaCyc: a multiorganism database of metabolic pathways and enzymes 10.1093/nar/gkh100. Nucl Acids Res 32, D438–442.CrossRefPubMedGoogle Scholar
  42. 42.
    Gopalacharyulu PV, Lindfors E, Bounsaythip C, et al. (2005) Data integration and visualization system for enabling conceptual biology. Bioinformatics 21, i177–185.CrossRefPubMedGoogle Scholar
  43. 43.
    Wheelock CE, Wheelock AM, Kawashima S, Diez D, Kanehisa M, van Erk M, Kleemann R, Haeggström JZ, Goto S. (2009) Systems biology approaches and pathway tools for investigating cardiovascular disease. Mol Biosyst. 5(6), 588–602.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Craig E. Wheelock
    • 1
    • 2
  • Susumu Goto
    • 2
  • Laxman Yetukuri
    • 3
  • Fabio Luiz D’Alexandri
    • 1
    • 4
  • Christian Klukas
    • 5
  • Falk Schreiber
    • 6
  • Matej Orešič
    • 3
  1. 1.Department of Medical Biochemistry and Biophysics, Division of Physical Chemistry IIKarolinska InstitutetStockholmSweden
  2. 2.Bioinformatics Center, Institute for Chemical ResearchKyoto UniversityKyotoJapan
  3. 3.VTT Technical Research Centre of FinlandEspooFinland
  4. 4.Department of Parasitology, Department of Biochemical SciencesUniversity of San PauloSan PauloBrazil
  5. 5.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
  6. 6.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben and Institute of Computer Science, Martin-Luther-UniversityHalle-WittenbergGermany

Personalised recommendations