Biofuels pp 61-77 | Cite as

Lignocellulosic Biomass Pretreatment Using AFEX

  • Venkatesh Balan
  • Bryan Bals
  • Shishir P. S. Chundawat
  • Derek Marshall
  • Bruce E. Dale
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 581)

Summary

Although cellulose is the most abundant organic molecule, its susceptibility to hydrolysis is restricted due to the rigid lignin and hemicellulose protection surrounding the cellulose micro fibrils. Therefore, an effective pretreatment is necessary to liberate the cellulose from the lignin–hemicellulose seal and also reduce cellulosic crystallinity. Some of the available pretreatment techniques include acid hydrolysis, steam explosion, ammonia fiber expansion (AFEX), alkaline wet oxidation, and hot water pretreatment. Besides reducing lignocellulosic recalcitrance, an ideal pretreatment must also minimize formation of degradation products that inhibit subsequent hydrolysis and fermentation. AFEX is an important pretreatment technology that utilizes both physical (high temperature and pressure) and chemical (ammonia) processes to achieve effective pretreatment. Besides increasing the surface accessibility for hydrolysis, AFEX promotes cellulose decrystallization and partial hemicellulose depolymerization and reduces the lignin recalcitrance in the treated biomass. Theoretical glucose yield upon optimal enzymatic hydrolysis on AFEX-treated corn stover is approximately 98%. Furthermore, AFEX offers several unique advantages over other pretreatments, which include near complete recovery of the pretreatment chemical (ammonia), nutrient addition for microbial growth through the remaining ammonia on pretreated biomass, and not requiring a washing step during the process which facilitates high solid loading hydrolysis. This chapter provides a detailed practical procedure to perform AFEX, design the reactor, determine the mass balances, and conduct the process safely.

Key words

AFEX Biomass Pretreatment Hydrolysis Fermentation 

References

  1. 1.
    Gray, K.A. Zhao, L., Emptage, M. (2006) Bioethanol. Curr. Opin. Chem. Biol. 10, 141–146CrossRefGoogle Scholar
  2. 2.
    Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Frederick, W.J. Jr., Hallett, J.P., Leak, D.J., Liotta, C.L., Mielenz, J.R., Murphy, R., Templer, R., Tschaplinski, T. (2006) The path forward for biofuels and biomaterials. Science. 311, 484–489CrossRefGoogle Scholar
  3. 3.
    Ohara, H. (2003) Biorefinery. Appl. Microbiol. Biotechnol. 62, 474–477CrossRefGoogle Scholar
  4. 4.
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M. (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686CrossRefGoogle Scholar
  5. 5.
    Wyman, C.E., Dale, B.E., Elander, R.T., Holtzapple, M., Ladisch, M.R., Lee, Y.Y. (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour. Technol. 96, 1959–1966CrossRefGoogle Scholar
  6. 6.
    Dale, B.E. (1986) Method for increasing the reactivity and digestibility of cellulose with ammonia. US Patent 4,600,590Google Scholar
  7. 7.
    Teymouri, F., Laureano-Perez, L., Alizadeh, H., Dale, B.E. (2005) Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour. Technol. 96, 2014–2018CrossRefGoogle Scholar
  8. 8.
    Gollapalli, L.E., Dale, B.E., Rivers, D.M. (2002) Predicting digestibility of ammonia fiber explosion (AFEX) treated rice straw. Appl. Biochem. Biotechnol. 98–100, 23–35CrossRefGoogle Scholar
  9. 9.
    O’Connor, J.J. (1972) Ammonia explosion pulping: a new fiber separation process. Tappi, 55, 353Google Scholar
  10. 10.
    Sulbaran de Ferrer, B., Aristiguieta, M., Dale, B.E., Ferrer, A., Ojada de Rodriguez (2003) Enzymatic hydrolysis of ammonia-treated rice straw. Appl. Biochem. Biotechnol. 105–108, 155–164CrossRefGoogle Scholar
  11. 11.
    Eggeman, T., Elander, R.T. (2005) Process and economic analysis of pretreatment technologies. Bioresour. Technol. 96, 2019–2025CrossRefGoogle Scholar
  12. 12.
    Alizadeh, H., Teymouri, F., Gilbert, T.I., Dale, B.E. (2005) Pretreatment of switchgrass by ammonia fiber explosion (AFEX) Appl. Biochem. Biotechnol. 121, 1133–1142CrossRefGoogle Scholar
  13. 13.
    Bals, B., Dale, B.E., and Venkatesh, B. (2006) Enzymatic hydrolysis of distiller’s dry grain and solubles (DDGS) using ammonia fiber expansion pretreatment. Energy Fuels, 20, 2732–2736CrossRefGoogle Scholar
  14. 14.
    Chundawat, S.P.S., Balan, V. and Dale, B.E. (2007) Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnol. Bioeng. 96, 219–231CrossRefGoogle Scholar
  15. 15.
    Klinke, H.B., Thomsen, A.B. and Ahring, B.K. (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biotechnol. 66, 10–26CrossRefGoogle Scholar
  16. 16.
    Zhu, Y., Lee, Y.Y. and Elander, R.T. (2005) Optimization of dilute-acid pretreatment of corn stover using a high-solids percolation reactor. Appl. Biochem. Biotechnol. 124, 1045–1054CrossRefGoogle Scholar
  17. 17.
    Viamajala, S., Selig, M.J., Vinzant, T.B., Tucker, M.P., Himmel, M.E., McMillan, J.D. and Decker, S.R. (2006) Catalyst transport in corn stover internodes: elucidating transport mechanisms using Direct Blue-I. Appl. Biochem. Biotechnol. 129–132, 509–527CrossRefGoogle Scholar
  18. 18.
    Laine, J., Stenius, P., Carlsson, G. and Strom, G. (1994) Surface characterization of unbleached kraft pulps by means of ESCA. Cellulose 1, 145–160CrossRefGoogle Scholar
  19. 19.
    Brunner, E. (1988) Fluid mixtures at high pressures VI. phase separation and critical phenomena in 18 (n-alkane + ammonia) and 4 (n-alkane _ methanol) mixtures. J. Chem. Thermodyn. 20, 273CrossRefGoogle Scholar
  20. 20.
    Gillespie, P.C., Wilding, W.V. and Wilson, G.M. (1987) Vapor-liquid equilibrium measurements on the ammonia-water system from 313 K to 589K. AICHE Symposium Series 83, 97–127Google Scholar
  21. 21.
    Smolen, T.M., Manley, D.B. and Poling, B.E. (1991) Vapor-liquid equilibrium data for the NH3-H2O system and Its description with a modified cubic equation of state. J. Chem. Eng. data 36, 202–208CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Venkatesh Balan
    • 1
  • Bryan Bals
    • 1
  • Shishir P. S. Chundawat
    • 1
  • Derek Marshall
    • 1
  • Bruce E. Dale
    • 1
  1. 1.Department of Chemical Engineering and Materials ScienceMichigan State UniversityLansingUSA

Personalised recommendations