Chemotaxis pp 417-435 | Cite as

Single-Molecule Imaging Techniques to Visualize Chemotactic Signaling Events on the Membrane of Living Dictyostelium Cells

  • Yukihiro Miyanaga
  • Satomi Matsuoka
  • Masahiro Ueda
Part of the Methods in Molecular Biology™ book series (MIMB, volume 571)


In this chapter, we describe methods to monitor signaling events at the single-molecule level on the membrane of living cells by using total internal reflection fluorescence microscopy (TIRFM). The techniques provide a powerful tool for elucidating the stochastic properties of signaling molecules involved in chemotaxis of the cellular slime mold Dictyostelium discoideum. Taking cAMP receptor 1 (cAR1) as an example of a target protein for single-molecule imaging, we describe the experimental setup of TIRFM, a method for labeling cAR1 with a fluorescent dye, and a method for investigating the receptor’s lateral mobility. We discuss how the developmental progression of cells modulates both cAR1 behavior and the phenotypic variability in cAR1 mobility for different cell populations.

Key words:

TIRFM Single molecule cAR1 Lifetime Diffusion Lateral mobility 


  1. 1.
    Miyanaga, Y., Matsuoka, S., Yanagida, T., and Ueda, M. (2007) Stochastic signal inputs for chemotactic response in Dictyostelium cells revealed by single molecule imaging techniques. Biosystems 88, 251–260.PubMedCrossRefGoogle Scholar
  2. 2.
    Ueda, M., Sako, Y., Tanaka, T., Devreotes, P., and Yanagida, T. (2001) Single-molecule analysis of chemotactic signaling in Dictyostelium cells. Science 294, 864–867.PubMedCrossRefGoogle Scholar
  3. 3.
    Matsuoka, S., Iijima, M., Watanabe, T. M., Kuwayama, H., Yanagida, T., Devreotes, P. N., and Ueda, M. (2006) Single-molecule analysis of chemoattractant-stimulated membrane recruit­ment of a PH-domain-containing protein. J. Cell Sci. 119, 1071–1079.PubMedCrossRefGoogle Scholar
  4. 4.
    Vazquez, F., Matsuoka, S., Sellers, W. R., Yanagida, T., Ueda, M., and Devreotes, P. N. (2006) Tumor suppressor PTEN acts through dynamic interaction with the plasma membrane. Proc. Natl. Acad. Sci. U.S.A. 103, 3633–3638.PubMedCrossRefGoogle Scholar
  5. 5.
    Fisher, P. R., Merkl, R., and Gerisch, G. (1989) Quantitative analysis of cell motility and chemotaxis in Dictyostelium discoideum by using an image processing system and a novel chemotaxis chamber providing stationary chemical gradients. J. Cell Biol. 108, 973–984.PubMedCrossRefGoogle Scholar
  6. 6.
    Mato, J. M., Losada, A., Nanjundiah, V., and Konijn, T. M. (1975) Signal input for a chemotactic response in the cellular slime mold Dictyostelium discoideum. Proc. Natl. Acad. Sci. U.S.A. 72, 4991–4993.PubMedCrossRefGoogle Scholar
  7. 7.
    Postma, M., Roelofs, J., Goedhart, J., Loovers, H. M., Visser, A. J., and Van Haastert, P. J. (2004) Sensitization of Dictyostelium chemotaxis by phosphoinositide-3-kinase-mediated self-organizing signalling patches. J. Cell Sci. 117, 2925–2935.PubMedCrossRefGoogle Scholar
  8. 8.
    Ueda, M. and Shibata, T. (2007) Stochastic signal processing and transduction in chemotactic response of eukaryotic cells. Biophys. J. 93, 11–20.PubMedCrossRefGoogle Scholar
  9. 9.
    Matsuoka, S., Miyanaga, Y., Yanagida, T., and Ueda, M. (2008) Single-molecule imaging of stochastic signaling events in living cells. In: Selvin, P. R. and Ha, T. (eds.) Single-Molecule Techniques. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 239–258.Google Scholar
  10. 10.
    Ueda, M., Miyanaga, Y., and Yanagida, T. (2005) Single-molecule analysis of chemotactic signaling mediated by cAMP receptor on living cells. In: Haga, T. and Takeda, S. (eds.) G Protein-Coupled Receptor: Structure, Function, and Ligand Screening. CRC Press, Boca Raton, FL, pp. 197–218.Google Scholar
  11. 11.
    Wazawa, T. and Ueda, M. (2005) Total internal reflection fluorescence microscopy in single molecule nanobioscience. Adv. Biochem. Eng. Biotechnol. 95, 77–106.PubMedGoogle Scholar
  12. 12.
    Watts, D. J. and Ashworth, J. M. (1970) Growth of myxamoebae of the cellular slime mould Dictyostelium discoideum in axenic culture. Biochem. J. 119, 171–174.PubMedGoogle Scholar
  13. 13.
    Kuwayama, H., Obara, S., Morio, T., Katoh, M., Urushihara, H., and Tanaka, Y. (2002) PCR-mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vectors. Nucleic Acids Res. 30, E2.PubMedCrossRefGoogle Scholar
  14. 14.
    Douglass, A. D. and Vale, R. D. (2005) Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121, 937–950.PubMedCrossRefGoogle Scholar
  15. 15.
    Klopfenstein, D. R., Tomishige, M., Stuurman, N., and Vale, R. D. (2002) Role of phosphatidylinositol(4,5) bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell 109, 347–358.PubMedCrossRefGoogle Scholar
  16. 16.
    Ide, T., Takeuchi, Y., Aoki, T., and Yanagida, T. (2002) Simultaneous optical and electrical recording of a single ion-channel. Jpn. J. Physiol. 52, 429–434.PubMedCrossRefGoogle Scholar
  17. 17.
    Ide, T. and Yanagida, T. (1999) An artificial lipid bilayer formed on an agarose-coated glass for simultaneous electrical and optical measurement of single ion channels. Biochem. Biophys. Res. Commun. 265, 595–599.PubMedCrossRefGoogle Scholar
  18. 18.
    Kitamura, K., Tokunaga, M., Iwane, A. H., and Yanagida, T. (1999) A single myosin head moves along an actin filament with regular steps of 5.3 nanometres. Nature 397, 129–134.PubMedCrossRefGoogle Scholar
  19. 19.
    Harwood, A. J. and Drury, L. (1990) New vectors for expression of the E.coli lacZ gene in Dictyostelium. Nucleic Acids Res. 18, 4292.PubMedCrossRefGoogle Scholar
  20. 20.
    Kuwayama, H. and Nagasaki, A. (2008) Desalted deep sea water increases transformation and homologous recombination efficiencies in Dictyostelium discoideum. J. Mol. Microbiol. Biotechnol. 14, 157–162.PubMedCrossRefGoogle Scholar
  21. 21.
    Parent, C. A., Blacklock, B. J., Froehlich, W. M., Murphy, D. B., and Devreotes, P. N. (1998) G protein signaling events are activated at the leading edge of chemotactic cells. Cell 95, 81–91.PubMedCrossRefGoogle Scholar
  22. 22.
    Fukui, Y., Yumura, S., and Yumura, T. K. (1987) Agar-overlay immunofluorescence: high-resolution studies of cytoskeletal components and their changes during chemotaxis. Methods Cell Biol. 28, 347–356.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Yukihiro Miyanaga
    • 1
    • 2
  • Satomi Matsuoka
    • 1
    • 2
  • Masahiro Ueda
    • 1
    • 2
  1. 1.Laboratories for Nanobiology, Graduate School of Frontier BiosciencesOsaka UniversityOsakaJapan
  2. 2.Japan Science and Technology Agency, CRESTOsakaJapan

Personalised recommendations