Chemotaxis pp 371-383

Part of the Methods in Molecular Biology™ book series (MIMB, volume 571)

Monitoring Dynamic GPCR Signaling Events Using Fluorescence Microscopy, FRET Imaging, and Single-Molecule Imaging

  • Xuehua Xu
  • Joseph A. Brzostowski
  • Tian Jin


How a eukaryotic cell translates a small concentration difference of a chemoattractant across the length of its surface into highly polarized intracellular responses is a fundamental question in chemotaxis. Chemoattractants are detected by G-protein-coupled receptors (GPCRs). Binding of chemoattractants to GPCRs induces the dissociation of heterotrimeric G-proteins into Gα and Gβγ subunits, which in turn, activate downstream signaling networks. To fully understand the molecular mechanisms of chemotaxis, it is essential to quantitatively measure the dynamic changes of chemoattractant concentrations around cells, activation of heterotrimeric G-proteins, and the mobility of GPCR and G-protein subunits in the cell membrane. Here, we outline fluorescence imaging methods including Förster resonance energy transfer (FRET) imaging and a single-molecule analysis that allow us to measure the dynamic properties of GPCR signaling in single live cells.

Key words:

Confocal fluorescence microscopy Förster resonance energy transfer Total internal reflection fluorescence microscopy Single-molecule imaging GPCR Heterotrimeric G-proteins Spatiotemporal dynamics 


  1. 1.
    Moser, B. and Loetscher, P. (2001) Lymphocyte traffic control by chemokines. Nat. Immunol. 2, 123–128.PubMedCrossRefGoogle Scholar
  2. 2.
    Murphy, P. M. (2002) International Union of Pharmacology. XXX. Update on chemokine receptor nomenclature. Pharmacol. Rev. 54, 227–229.PubMedCrossRefGoogle Scholar
  3. 3.
    Jin, T., Xu, X., and Hereld, D. (2008) Chemotaxis, chemokine receptors and human disease. Cytokine 44, 1–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Devreotes, P. N. and Zigmond, S. H. (1988) Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium. Annu. Rev. Cell Biol. 4, 649–686.PubMedCrossRefGoogle Scholar
  5. 5.
    Jin, T. and Hereld, D. (2006) Moving toward understanding eukaryotic chemotaxis. Eur. J. Cell Biol. 85, 905–913.PubMedCrossRefGoogle Scholar
  6. 6.
    Fang, J., Brzostowski, J. A., Ou, S., Isik, N., Nair, V., and Jin, T. (2007) A vesicle surface tyrosine kinase regulates phagosome maturation. J. Cell Biol. 178, 411–423.PubMedCrossRefGoogle Scholar
  7. 7.
    Devreotes, P. N. (1994) G protein-linked signaling pathways control the developmental program of Dictyostelium. Neuron 12, 235–241.PubMedCrossRefGoogle Scholar
  8. 8.
    Chung, C. Y., Funamoto, S., and Firtel, R. A. (2001) Signaling pathways controlling cell polarity and chemotaxis. Trends Biochem. Sci. 26, 557–566.PubMedCrossRefGoogle Scholar
  9. 9.
    Iijima, M., Huang, Y. E., and Devreotes, P. (2002) Temporal and spatial regulation of chemotaxis. Dev. Cell 3, 469–478.PubMedCrossRefGoogle Scholar
  10. 10.
    Xu, X., Meier-Schellersheim, M., Jiao, X., Nelson, L. E., and Jin, T. (2005) Quantitative imaging of single live cells reveals spatiotemporal dynamics of multistep signaling events of chemoattractant gradient sensing in Dictyostelium. Mol. Biol. Cell 16, 676–688.PubMedCrossRefGoogle Scholar
  11. 11.
    Xu, X., Meier-Schellersheim, M., Yan, J., and Jin, T. (2007) Locally controlled inhibitory mechanisms are involved in eukaryotic GPCR-mediated chemosensing. J. Cell Biol. 178, 141–153.PubMedCrossRefGoogle Scholar
  12. 12.
    Xu, X., Brzostowski, J. A., and Jin, T. (2006) Using quantitative fluorescence microscopy and FRET imaging to measure spatiotemporal signaling events in single living cells. Methods Mol. Biol. 346, 281–296.PubMedGoogle Scholar
  13. 13.
    Isik, N., Brzostowski, J. A., and Jin, T. (2008) An Elmo-like protein associated with myosin II restricts spurious F-actin events to coordinate phagocytosis and chemotaxis. Dev. Cell 15, 590–602.PubMedCrossRefGoogle Scholar
  14. 14.
    Miyawaki, A., Llopis, J., Heim, R., McCaffery, J. M., Adams, J. A., Ikura, M., and Tsien, R. Y. (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887.PubMedCrossRefGoogle Scholar
  15. 15.
    Jiao, X., Zhang, N., Xu, X., Oppenheim, J. J., and Jin, T. (2005) Ligand-induced partitioning of human CXCR1 chemokine receptors with lipid raft microenvironments facilitates G-protein-dependent signaling. Mol. Cell Biol. 25, 5752–5762.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Xuehua Xu
    • 1
  • Joseph A. Brzostowski
    • 2
  • Tian Jin
    • 2
  1. 1.Department of OncologyGeorgetown University School of MedicineWashingtonUSA
  2. 2.Laboratory of ImmunogeneticsNational Institute of Allergy and Infectious Diseases, NIHRockvilleUSA

Personalised recommendations