Advertisement

Chemotaxis pp 25-49 | Cite as

Prokaryotic Phototaxis

  • Wouter D. Hoff
  • Michael A. van der Horst
  • Clara B. Nudel
  • Klaas J. Hellingwerf
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 571)

Summary

Microorganisms have various mechanisms at their disposal to react to (changes in) their ambient light climate (i.e., intensity, color, direction, and degree of polarization). Of these, one of the best studied mechanisms is the process of phototaxis. This process can be described as a behavioral migration-response of an organism toward a change in illumination regime. In this chapter we discuss three of these migration responses, based on swimming, swarming, and twitching motility, respectively. Swimming motility has been studied using a wide range of techniques, usually microscopy based. We present a detailed description of the assays used to study phototaxis in liquid cultures of the phototrophic organisms Halobacterium salinarum, Halorhodospira halophila, and Rhodobacter sphaeroides and briefly describe the molecular basis of these responses. Swarming and twitching motility are processes taking place at the interface between a solid phase and a liquid or gas phase. Although assays to study these processes are relatively straightforward, they are accompanied by technical complications, which we describe. Furthermore, we discuss the molecular processes underlying these forms of motility in Rhodocista centenaria and Synechocystis PCC6803. Recently, it has become clear that also chemotrophic organisms contain photoreceptor proteins that allow them to respond to their ambient light climate. Surprisingly, light-modulated motility responses can also be observed in the chemotrophic organisms Escherichia coli and Acinetobacter calcoaceticus. In the light-modulated surface migration not only “che-like” signal transduction reactions may play a role, but in addition processes as modulation of gene expression and even intermediary metabolism.

Key words

Halorhodospira halophila Ectothiorhodospira Halobacterium salinarum Rhodobacter sphaeroides Synechocystis Rhodocista centenaria Rhodospirillum centenum Swimming motility Swarming motility Twitching motility Photoactive yellow protein Sensory rhodopsin Phytochrome BLUF Redox sensing 

Notes

The authors thank Prof. John L. Spudich valuable comments and Miwa Hara, Mariana Bitrian, Dr. W. Sprenger, and Dr. R. Kort for their contributions to this work. W.D.H. gratefully acknowledges support from NIH grant GM063805 and OCAST grant HR07-135S, and from startup funds provided by Oklahoma State University.

References

  1. 1.
    Harshey, R. M. (2003) Bacterial motility on a surface: many ways to a common goal. Annu. Rev. Microbiol. 57, 249–273.PubMedCrossRefGoogle Scholar
  2. 2.
    Biais, N., Ladoux, B., Higashi, D., So, M., and Sheetz, M. (2008) Cooperative retraction of bundled type IV pili enables nanonewton force generation. PLoS Biol. 6, e87.PubMedCrossRefGoogle Scholar
  3. 3.
    Eisenbach, M. (2007) A hitchhiker’s guide through advances and conceptual changes in chemotaxis. J. Cell. Physiol. 213, 574–580.PubMedCrossRefGoogle Scholar
  4. 4.
    Ward, M. J., and Zusman, D. R. (1997) Regulation of directed motility in Myxococcus xanthus. Mol. Microbiol. 24, 885–893.PubMedCrossRefGoogle Scholar
  5. 5.
    Whitchurch, C. B., Leech, A. J., Young, M. D., Kennedy, D., Sargent, J. L., Bertrand, J. J., et al. (2004) Characterization of a complex chemosensory signal transduction system which controls twitching motility in Pseudomonas aeruginosa. Mol. Microbiol. 52, 873–893.PubMedCrossRefGoogle Scholar
  6. 6.
    Mauriello, E. M., and Zusman, D. R. (2007) Polarity of motility systems in Myxococcus xanthus. Curr. Opin. Microbiol. 10, 624–629.PubMedCrossRefGoogle Scholar
  7. 7.
    Oberpichler, I., Rosen, R., Rasouly, A., Vugman, M., Ron, E. Z., and Lamparter, T. (2008) Light affects motility and infectivity of Agrobacterium tumefaciens. Environ. Microbiol. 10, 2020–2029.PubMedCrossRefGoogle Scholar
  8. 8.
    Lanois, A., Jubelin, G., and Givaudan, A. (2008) FliZ, a flagellar regulator, is at the crossroads between motility, haemolysin expression and virulence in the insect pathogenic bacterium Xenorhabdus. Mol. Microbiol. 68, 516–533.PubMedCrossRefGoogle Scholar
  9. 9.
    Armitage, J. P., and Hellingwerf, K. J. (2003) Light-induced behavioral responses (‘phototaxis’) in prokaryotes. Photosynth. Res. 76, 145–155.PubMedCrossRefGoogle Scholar
  10. 10.
    Dencher, N. A., Hildebrand, E., and Lester, P. (1982) Photobehavior of Halobacterium halobium. Methods Enzymol. 88, 420–426.CrossRefGoogle Scholar
  11. 11.
    Spudich, J. L., and Bogomolni, R. A. (1988) Sensory rhodopsins of halobacteria. Annu. Rev. Biophys. Biophys. Chem. 17, 193–215.PubMedCrossRefGoogle Scholar
  12. 12.
    Petracchi, D., Lucia, S., and Cercignani, G. (1994) New trends in photobiology: photobehaviour of Halobacterium halobium: proposed models for signal transduction and motor switching. J. Photochem. Photobiol. B Biol. 24, 75–99.CrossRefGoogle Scholar
  13. 13.
    Spudich, J. L., and Stoeckenius, W. (1979) Photosensory and chemosensory behavior of Halobacterium halobium. Photobiochem. Photobiophys. 1, 43–53.Google Scholar
  14. 14.
    Hoff, W. D., Jung, K. H., and Spudich, J. L. (1997) Molecular mechanism of photosignaling by archaeal sensory rhodopsins. Annu. Rev. Biophys. Biomol. Struct. 26, 223–258.PubMedCrossRefGoogle Scholar
  15. 15.
    Nutsch, T., Marwan, W., Oesterhelt, D., and Gilles, E. D. (2003) Signal processing and flagellar motor switching during phototaxis of Halobacterium salinarum. Genome Res. 13, 2406–2412.PubMedCrossRefGoogle Scholar
  16. 16.
    Sasaki, J., and Spudich, J. L. (2008) Signal transfer in haloarchaeal sensory rhodopsin-transducer complexes. Photochem. Photobiol. 84, 863–868.PubMedCrossRefGoogle Scholar
  17. 17.
    Armitage, J. P., and Macnab, R. M. (1987) Unidirectional, intermittent rotation of the flagellum of Rhodobacter sphaeroides. J. Bacteriol. 169, 514–518.PubMedGoogle Scholar
  18. 18.
    Berry, R. M., and Armitage, J. P. (2000) Response kinetics of tethered Rhodobacter sphaeroides to changes in light intensity. Biophys. J. 78, 1207–1215.PubMedCrossRefGoogle Scholar
  19. 19.
    Gauden, D. E., and Armitage, J. P. (1995) Electron transport-dependent taxis in Rhodobacter sphaeroides. J. Bacteriol. 177, 5853–5859.PubMedGoogle Scholar
  20. 20.
    Porter, S. L., and Armitage, J. P. (2004) Chemotaxis in Rhodobacter sphaeroides requires an atypical histidine protein kinase. J. Biol. Chem. 279, 54573–54580.PubMedCrossRefGoogle Scholar
  21. 21.
    Porter, S. L., Warren, A. V., Martin, A. C., and Armitage, J. P. (2002) The third chemotaxis locus of Rhodobacter sphaeroides is essential for chemotaxis. Mol. Microbiol. 46, 1081–1094.PubMedCrossRefGoogle Scholar
  22. 22.
    Sprenger, W. W., Hoff, W. D., Armitage, J. P., and Hellingwerf, K. J. (1993) The eubacterium Ectothiorhodospira halophila is negatively phototactic, with a wavelength dependence that fits the absorption spectrum of the photoactive yellow protein. J. Bacteriol. 175, 3096–3104.PubMedGoogle Scholar
  23. 23.
    Hellingwerf, K. J., Hendriks, J., and Gensch, T. (2003) Photoactive Yellow Protein, a new type of photoreceptor protein: will this “Yellow Lab” bring us where we want to go? J. Phys. Chem. A 107, 1082–1094.CrossRefGoogle Scholar
  24. 24.
    Mitchell, A. J., and Wimpenny, J. W. (1997) The effects of agar concentration on the growth and morphology of submerged colonies of motile and non-motile bacteria. J. Appl. Microbiol. 83, 76–84.PubMedCrossRefGoogle Scholar
  25. 25.
    Niu, C., Graves, J. D., Mokuolu, F. O., Gilbert, S. E., and Gilbert, E. S. (2005) Enhanced swarming of bacteria on agar plates containing the surfactant Tween 80. J. Microbiol. Methods 62, 129–132.PubMedCrossRefGoogle Scholar
  26. 26.
    Toguchi, A., Siano, M., Burkart, M., and Harshey, R. M. (2000) Genetics of swarming motility in Salmonella enterica serovar typhimurium: critical role for lipopolysaccharide. J. Bacteriol. 182, 6308–6321.PubMedCrossRefGoogle Scholar
  27. 27.
    van der Horst, M. A., Key, J., and Hellingwerf, K. J. (2007) Photosensing in chemotrophic, non-phototrophic bacteria: let there be light sensing too. Trends Microbiol. 15, 554–562.PubMedCrossRefGoogle Scholar
  28. 28.
    Delprato, A. M., Samadani, A., Kudrolli, A., and Tsimring, L. S. (2001) Swarming ring patterns in bacterial colonies exposed to ultraviolet radiation. Phys. Rev. Lett. 87, 158102.PubMedCrossRefGoogle Scholar
  29. 29.
    Ng, W. O., Grossman, A. R., and Bhaya, D. (2003) Multiple light inputs control phototaxis in Synechocystis sp. strain PCC6803. J. Bacteriol. 185, 1599–1607.PubMedCrossRefGoogle Scholar
  30. 30.
    Ragatz, L., Jiang, Z. Y., Bauer, C. E., and Gest, H. (1995) Macroscopic phototactic behavior of the purple photosynthetic bacterium Rhodospirillum centenum. Arch. Microbiol. 163, 1–6.PubMedCrossRefGoogle Scholar
  31. 31.
    McClain, J., Rollo, D. R., Rushing, B. G., and Bauer, C. E. (2002) Rhodospirillum centenum utilizes separate motor and switch components to control lateral and polar flagellum rotation. J. Bacteriol. 184, 2429–2438.PubMedCrossRefGoogle Scholar
  32. 32.
    Sackett, M. J., Armitage, J. P., Sherwood, E. E., and Pitta, T. P. (1997) Photoresponses of the purple nonsulfur bacteria Rhodospirillum centenum and Rhodobacter sphaeroides. J. Bacteriol. 179, 6764–6768.PubMedGoogle Scholar
  33. 33.
    Berleman, J. E., and Bauer, C. E. (2005) A che-like signal transduction cascade involved in controlling flagella biosynthesis in Rhodospirillum centenum. Mol. Microbiol. 55, 1390–1402.PubMedCrossRefGoogle Scholar
  34. 34.
    Romagnoli, S., Hochkoeppler, A., Damgaard, L., and Zannoni, D. (1997) The effect of respiration on the phototactic behavior of the purple nonsulfur bacterium Rhodospirillum centenum. Arch. Microbiol. 167, 99–105.CrossRefGoogle Scholar
  35. 35.
    Nakamura, Y., Kaneko, T., and Tabata, S. (2000) CyanoBase, the genome database for Synechocystis sp. strain PCC6803: status for the year 2000. Nucleic Acids Res. 28, 72.PubMedCrossRefGoogle Scholar
  36. 36.
    Bhaya, D., Bianco, N. R., Bryant, D., and Grossman, A. (2000) Type IV pilus biogenesis and motility in the cyanobacterium Synechocystis sp. PCC6803. Mol. Microbiol. 37, 941–951.PubMedCrossRefGoogle Scholar
  37. 37.
    Li, Y., Hao, G., Galvani, C. D., Meng, Y., De La Fuente, L., Hoch, H. C., et al. (2007) Type I and type IV pili of Xylella fastidiosa affect twitching motility, biofilm formation and cell-cell aggregation. Microbiology 153, 719–726.PubMedCrossRefGoogle Scholar
  38. 38.
    Wu, S. H., and Lagarias, J. C. (2000) Defining the bilin lyase domain: lessons from the extended phytochrome superfamily. Biochemistry 39, 13487–13495.PubMedCrossRefGoogle Scholar
  39. 39.
    Okajima, K., Yoshihara, S., Fukushima, Y., Geng, X., Katayama, M., Higashi, S., et al. (2005) Biochemical and functional characterization of BLUF-type flavin-binding proteins of two species of cyanobacteria. J. Biochem. 137, 741–750.PubMedCrossRefGoogle Scholar
  40. 40.
    Yoshihara, S., Katayama, M., Geng, X., and Ikeuchi, M. (2004) Cyanobacterial phytochrome-like PixJ1 holoprotein shows novel reversible photoconversion between blue- and green-absorbing forms. Plant Cell Physiol. 45, 1729–1737.PubMedCrossRefGoogle Scholar
  41. 41.
    Yoshihara, S., Suzuki, F., Fujita, H., Geng, X. X., and Ikeuchi, M. (2000) Novel putative photoreceptor and regulatory genes required for the positive phototactic movement of the unicellular motile cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol. 41, 1299–1304.PubMedCrossRefGoogle Scholar
  42. 42.
    Bhaya, D., Takahashi, A., and Grossman, A. R. (2001) Light regulation of type IV pilus-dependent motility by chemosensor-like elements in Synechocystis PCC6803. Proc. Natl. Acad. Sci. USA 98, 7540–7545.PubMedCrossRefGoogle Scholar
  43. 43.
    Yuan, H., and Bauer, C. E. (2008) PixE promotes dark oligomerization of the BLUF photoreceptor PixD. Proc. Natl. Acad. Sci. USA 105, 11715–11719.PubMedCrossRefGoogle Scholar
  44. 44.
    Sato, S., Shimoda, Y., Muraki, A., Kohara, M., Nakamura, Y., and Tabata, S. (2007) A large-scale protein protein interaction analysis in Synechocystis sp. PCC6803. DNA Res. 14, 207–216.PubMedCrossRefGoogle Scholar
  45. 45.
    Ohmori, M., and Okamoto, S. (2004) Photoresponsive cAMP signal transduction in cyanobacteria. Photochem. Photobiol. Sci. 3, 503–511.PubMedCrossRefGoogle Scholar
  46. 46.
    Terauchi, K., and Ohmori, M. (1999) An adenylate cyclase, Cya1, regulates cell motility in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol. 40, 248–251.PubMedCrossRefGoogle Scholar
  47. 47.
    Masuda, S., and Ono, T. A. (2004) Biochemical characterization of the major adenylyl cyclase, Cya1, in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett. 577, 255–258.PubMedCrossRefGoogle Scholar
  48. 48.
    Yoshimura, H., Yoshihara, S., Okamoto, S., Ikeuchi, M., and Ohmori, M. (2002) A cAMP receptor protein, SYCRP1, is responsible for the cell motility of Synechocystis sp. PCC 6803. Plant Cell Physiol. 43, 460–463.PubMedCrossRefGoogle Scholar
  49. 49.
    Bhaya, D., Nakasugi, K., Fazeli, F., and Burriesci, M. S. (2006) Phototaxis and impaired motility in adenylyl cyclase and cyclase receptor protein mutants of Synechocystis sp. strain PCC 6803. J. Bacteriol. 188, 7306–7310.PubMedCrossRefGoogle Scholar
  50. 50.
    Bhaya, D., Watanabe, N., Ogawa, T., and Grossman, A. R. (1999) The role of an alternative sigma factor in motility and pilus formation in the cyanobacterium Synechocystis sp. strain PCC6803. Proc. Natl. Acad. Sci. USA 96, 3188–3193.PubMedCrossRefGoogle Scholar
  51. 51.
    Asayama, M., and Imamura, S. (2008) Stringent promoter recognition and autoregulation by the group 3 sigma-factor SigF in the cyanobacterium Synechocystis sp. strain PCC 6803. Nucleic Acids Res. 36, 5297–5305.PubMedCrossRefGoogle Scholar
  52. 52.
    Huckauf, J., Nomura, C., Forchhammer, K., and Hagemann, M. (2000) Stress responses of Synechocystis sp. strain PCC 6803 mutants impaired in genes encoding putative alternative sigma factors. Microbiology 146(Pt 11), 2877–2889.PubMedGoogle Scholar
  53. 53.
    Gomelsky, M., and Klug, G. (2002) BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms. Trends Biochem. Sci. 27, 497–500.PubMedCrossRefGoogle Scholar
  54. 54.
    Yang, H., Sasarman, A., Inokuchi, H., and Adler, J. (1996) Non-iron porphyrins cause tumbling to blue light by an Escherichia coli mutant defective in hemG. Proc. Natl. Acad. Sci. USA 93, 2459–2463.PubMedCrossRefGoogle Scholar
  55. 55.
    Pesavento, C., Becker, G., Sommerfeldt, N., Possling, A., Tschowri, N., Mehlis, A., et al. (2008) Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli. Genes Dev. 22, 2434–2446.PubMedCrossRefGoogle Scholar
  56. 56.
    Chang, A. L., Tuckerman, J. R., Gonzalez, G., Mayer, R., Weinhouse, H., Volman, G., et al. (2001) Phosphodiesterase A1, a regulator of cellulose synthesis in Acetobacter xylinum, is a heme-based sensor. Biochemistry 40, 3420–3426.PubMedCrossRefGoogle Scholar
  57. 57.
    Palmen, R., Vosman, B., Buijsman, P., Breek, C. K., and Hellingwerf, K. J. (1993) Physiological characterization of natural transformation in Acinetobacter calcoaceticus. J. Gen. Microbiol. 139, 295–305.PubMedCrossRefGoogle Scholar
  58. 58.
    Henrichsen, J., and Blom, J. (1975) Correlation between twitching motility and possession of polar fimbriae in Acinetobacter calcoaceticus. Acta Pathol. Microbiol. Scand. [B] 83, 103–115.Google Scholar
  59. 59.
    Lanyi, J. K., and MacDonald, R. E. (1979) Light-induced transport in Halobacterium halobium. Methods Enzymol. 56, 398–407.PubMedCrossRefGoogle Scholar
  60. 60.
    Sistrom, W. R. (1962) The kinetics of the synthesis of photopigments in Rhodopseudomonas sphaeroides. J. Gen. Microbiol. 28, 607–616.PubMedCrossRefGoogle Scholar
  61. 61.
    Imhoff, J. F. (1986) Osmoregulation and compatible solutes in eubacteria. FEMS Microbiol. Rev. 39, 57–66.Google Scholar
  62. 62.
    Sundberg, S. A., Alam, M., and Spudich, J. L. (1986) Excitation signal processing times in Halobacterium halobium phototaxis. Biophys. J. 50, 895–900.PubMedCrossRefGoogle Scholar
  63. 63.
    Kort, R., Crielaard, W., Spudich, J. L., and Hellingwerf, K. J. (2000) Color-sensitive motility and methanol release responses in Rhodobacter sphaeroides. J. Bacteriol. 182, 3017–3021.PubMedCrossRefGoogle Scholar
  64. 64.
    Spudich, J. L., and Bogomolni, R. A. (1984) Mechanism of colour discrimination by a bacterial sensory rhodopsin. Nature 312, 509–513.PubMedCrossRefGoogle Scholar
  65. 65.
    Spudich, J. L., and Spudich, E. N. (1995) Selection and screening methods for halobacterial rhodopsin mutants. CSH Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  66. 66.
    Takahashi, T., and Kobatake, Y. (1982) Computer-linked automated method for measurement of the reversal frequency in phototaxis of Halobacterium halobium. Cell Struct. Funct. 7, 183–192.CrossRefGoogle Scholar
  67. 67.
    Chen, X., and Spudich, J. L. (2002) Demonstration of 2:2 stoichiometry in the functional SRI-HtrI signaling complex in Halobacterium membranes by gene fusion analysis. Biochemistry 41, 3891–3896.PubMedCrossRefGoogle Scholar
  68. 68.
    Hickman, J. W., Tifrea, D. F., and Harwood, C. S. (2005) A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc. Natl. Acad. Sci. USA 102, 14422–14427.PubMedCrossRefGoogle Scholar
  69. 69.
    Spudich, E. N., and Spudich, J. L. (1982) Control of transmembrane ion fluxes to select halorhodopsin-deficient and other energy-transduction mutants of Halobacterium halobium. Proc. Natl. Acad. Sci. USA 79, 4308–4312.PubMedCrossRefGoogle Scholar
  70. 70.
    Sundberg, S. A., Bogomolni, R. A., and Spudich, J. L. (1985) Selection and properties of phototaxis-deficient mutants of Halobacterium halobium. J. Bacteriol. 164, 282–287.PubMedGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Wouter D. Hoff
    • 1
  • Michael A. van der Horst
    • 2
  • Clara B. Nudel
    • 3
  • Klaas J. Hellingwerf
    • 2
  1. 1.Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterUSA
  2. 2.Department of Molecular Microbial Physiology, Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Department of Industrial Microbiology and Biotechnology, University of Buenos Aires School of PharmacyBuenos AiresArgentina

Personalised recommendations