PANTHER Pathway: An Ontology-Based Pathway Database Coupled with Data Analysis Tools

  • Huaiyu Mi
  • Paul Thomas
Part of the Methods in Molecular Biology book series (MIMB, volume 563)


The availability of whole genome sequences from various model organisms and increasing experimental data and literatures stimulated the evolution of a systems approach for biological research. The development of computational tools and algorithms to study biological pathway networks has made great progress in helping analyze research data. Pathway databases become an integral part of such an approach.

This chapter first discusses how biological knowledge is represented, particularly the importance of ontologies or standards in systems biology research. Next, we use PANTHER Pathway as an example to illustrate how ontologies and standards play a role in data modeling, data entry, and data display. Last, we describe the usage of such systems. We also describe the computational tools that utilize PANTHER Pathway information to analyze gene expression experimental data.

Key words

Pathway database ontology systems biology bioinformatics evolution protein classification gene expression analysis 


  1. 1.
    Gene Ontology Consortium (2006) The Gene Ontology (GO) project in 2006. Nucleic Acids Res 34, D322–6.Google Scholar
  2. 2.
    Ashburner, M., Mungall, C. J., and Lewis, S. E. (2003) Ontologies for biologists: a community model for the annotation of genomic data. Cold Spring Harb Symp Quant Biol 68, 227–35.PubMedCrossRefGoogle Scholar
  3. 3.
    Smith, B., Williams, J., and Schulze-Kremer, S. (2003) The ontology of the gene ontology. AMIA Annu Symp Proc 2003, 609–13.Google Scholar
  4. 4.
    Keseler, I. M., Collado-Vides, J., Gama-Castro, S., Ingraham, J., Paley, S., Paulsen, I. T., Peralta-Gil, M., and Karp, P. D. (2005) EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res 33, D334–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Karp, P. D., Riley, M., Paley, S. M., and Pelligrini-Toole, A. (1996) EcoCyc: an encyclopedia of Escherichia coli genes and metabolism. Nucleic Acids Res 24, 32–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., Arkin, A. P., Bornstein, B. J., Bray, D., Cornish-Bowden, A., Cuellar, A. A., Dronov, S., Gilles, E. D., Ginkel, M., Gor, V., Goryanin, II, Hedley, W. J., Hodgman, T. C., Hofmeyr, J. H., Hunter, P. J., Juty, N. S., Kasberger, J. L., Kremling, A., Kummer, U., Le Novere, N., Loew, L. M., Lucio, D., Mendes, P., Minch, E., Mjolsness, E. D., Nakayama, Y., Nelson, M. R., Nielsen, P. F., Sakurada, T., Schaff, J. C., Shapiro, B. E., Shimizu, T. S., Spence, H. D., Stelling, J., Takahashi, K., Tomita, M., Wagner, J., and Wang, J. (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–31.PubMedCrossRefGoogle Scholar
  7. 7.
    Luciano, J. S. (2005) PAX of mind for pathway researchers. Drug Discov Today 10, 937–42.PubMedCrossRefGoogle Scholar
  8. 8.
    Kitano, H. (2003) A graphical notation for biochemical networks. Biosilico 1, 169–76.CrossRefGoogle Scholar
  9. 9.
    Kitano, H., Funahashi, A., Matsuoka, Y., and Oda, K. (2005) Using process diagrams for the graphical representation of biological networks. Nat Biotechnol 23, 961–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Karp, P. D., Ouzounis, C. A., Moore-Kochlacs, C., Goldovsky, L., Kaipa, P., Ahren, D., Tsoka, S., Darzentas, N., Kunin, V., and Lopez-Bigas, N. (2005) Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res 33, 6083–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K. F., Itoh, M., Kawashima, S., Katayama, T., Araki, M., and Hirakawa, M. (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34, D354–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Fukuda, K. I., Yamagata, Y., and Takagi, T. (2004) FREX: a query interface for biological processes with hierarchical and recursive structures. In Silico Biol 4, 63–79.PubMedGoogle Scholar
  13. 13.
    Kushida, T., Takagi, T., and Fukuda, K. I. (2006) Event ontology: a pathway-centric ontology for biological processes. Pac Symp Biocomput 11, 152–63.Google Scholar
  14. 14.
    Gough, N. R. (2002) Science’s signal transduction knowledge environment: the connections maps database. Ann N Y Acad Sci 971, 585–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Mi, H., Guo, N., Kejariwal, A., and Thomas, P. D. (2007) PANTHER version 6: protein sequence and function evolution data with expanded representation of biological pathways. Nucleic Acids Res 35, D247–52.PubMedCrossRefGoogle Scholar
  16. 16.
    Thomas, P. D., Campbell, M. J., Kejariwal, A., Mi, H., Karlak, B., Daverman, R., Diemer, K., Muruganujan, A., and Narechania, A. (2003) PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Genome Res 13, 2129–41.PubMedCrossRefGoogle Scholar
  17. 17.
    Joshi-Tope, G., Gillespie, M., Vastrik, I., D’Eustachio, P., Schmidt, E., de Bono, B., Jassal, B., Gopinath, G. R., Wu, G. R., Matthews, L., Lewis, S., Birney, E., and Stein, L. (2005) Reactome: a knowledgebase of biological pathways. Nucleic Acids Res 33, D428–32.PubMedCrossRefGoogle Scholar
  18. 18.
    Thomas, P. D., Kejariwal, A., Guo, N., Mi, H., Campbell, M. J., Muruganujan, A., and Lazareva-Ulitsky, B. (2006) Applications for protein sequence-function evolution data: mRNA/protein expression analysis and coding SNP scoring tools. Nucleic Acids Res 34, W645–50.PubMedCrossRefGoogle Scholar
  19. 19.
    Cho, R. J., and Campbell, M. J. (2000) Transcription, genomes, function. Trends Genet 16, 409–15.PubMedCrossRefGoogle Scholar
  20. 20.
    Pruitt, K. D., and Maglott, D. R. (2001) RefSeq and LocusLink: NCBI gene-centered resources. Nucleic Acids Res 29, 137–40.PubMedCrossRefGoogle Scholar
  21. 21.
    FlyBase Consortium (2003) The FlyBase database of the Drosophila genome projects and community literature. Nucleic Acids Res 31, 172–5.CrossRefGoogle Scholar
  22. 22.
    Wilson, R. J., Goodman, J. L., and Strelets, V. B. (2008) FlyBase: integration and improvements to query tools. Nucleic Acids Res 36, D588–93.PubMedCrossRefGoogle Scholar
  23. 23.
    Clark, A. G., Glanowski, S., Nielsen, R., Thomas, P. D., Kejariwal, A., Todd, M. A., Tanenbaum, D. M., Civello, D., Lu, F., Murphy, B., Ferriera, S., Wang, G., Zheng, X., White, T. J., Sninsky, J. J., Adams, M. D., and Cargill, M. (2003) Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. Science 302, 1960–3.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Huaiyu Mi
    • 1
  • Paul Thomas
    • 1
  1. 1.Evolutionary Systems Biology Group, SRI InternationalMenlo ParkUSA

Personalised recommendations