Protein Networks and Pathway Analysis pp 275-287

Part of the Methods in Molecular Biology book series (MIMB, volume 563)

High-Throughput siRNA Screening as a Method of Perturbation of Biological Systems and Identification of Targeted Pathways Coupled with Compound Screening

  • Jeff Kiefer
  • Hongwei H. Yin
  • Qiang Q. Que
  • Spyro Mousses
Protocol

Abstract

High-throughput RNA interference (HT-RNAi) is a powerful research tool for parallel, ‘genome-wide’, targeted knockdown of specific gene products. Such perturbation of gene product expression allows for the systematic query of gene function. The phenotypic results can be monitored by assaying for specific alterations in molecular and cellular endpoints, such as promoter activation, cell proliferation and survival. RNAi profiling may also be coupled with drug screening to identify molecular correlates of drug response. As with other genomic-scale data, methods of data analysis are required to handle the unique aspects of data normalization and statistical processing. In addition, novel techniques or knowledge-mining strategies are required to extract useful biological information from HT-RNAi data. Knowledge-mining strategies involve the novel application of bioinformatic tools and expert curation to provide biological context to genomic-scale data such as that generated from HT-RNAi data. Pathway-based tools, whether text-mining based or manually curated, serve an essential role in knowledge mining. These tools can be applied during all steps of HT-RNAi screen experiments including pre-screen knowledge gathering, assay development and hit confirmation and validation. Most importantly, pathway tools allow the interrogation of HT-RNAi data to identify and prioritize pathway-based biological information as a result of specific loss of gene function.

Key words

RNAi high-throughput RNAi screening text-mining pathway analysis 

References

  1. 1.
    Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E. and Mello, C.C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811.PubMedCrossRefGoogle Scholar
  2. 2.
    Kennerdell, J.R. and Carthew, R.W. (1998) Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell, 95, 1017–1026.PubMedCrossRefGoogle Scholar
  3. 3.
    Misquitta, L. and Paterson, B.M. (1999) Targeted disruption of gene function in Drosophila by RNA interference (RNA-i): a role for nautilus in embryonic somatic muscle formation. Proc Natl Acad Sci U S A, 96, 1451–1456.PubMedCrossRefGoogle Scholar
  4. 4.
    Caplen, N.J., Parrish, S., Imani, F., Fire, A. and Morgan, R.A. (2001) Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci U S A, 98, 9742–9747.PubMedCrossRefGoogle Scholar
  5. 5.
    Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411, 494–498.PubMedCrossRefGoogle Scholar
  6. 6.
    Elbashir, S.M., Lendeckel, W. and Tuschl, T. (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev, 15, 188–200.PubMedCrossRefGoogle Scholar
  7. 7.
    Hammond, S.M., Boettcher, S., Caudy, A.A., Kobayashi, R. and Hannon, G.J. (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science, 293, 1146–1150.PubMedCrossRefGoogle Scholar
  8. 8.
    McManus, M.T. and Sharp, P.A. (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet, 3, 737–747.PubMedCrossRefGoogle Scholar
  9. 9.
    Aza-Blanc, P., Cooper, C.L., Wagner, K., Batalov, S., Deveraux, Q.L. and Cooke, M.P. (2003) Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Mol Cell, 12, 627–637.PubMedCrossRefGoogle Scholar
  10. 10.
    Berns, K., Hijmans, E.M., Mullenders, J., Brummelkamp, T.R., Velds, A., Heimerikx, M., Kerkhoven, R.M., Madiredjo, M., Nijkamp, W., Weigelt, B. et al. (2004) A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature, 428, 431–437.PubMedCrossRefGoogle Scholar
  11. 11.
    Brummelkamp, T.R., Fabius, A.W., Mullenders, J., Madiredjo, M., Velds, A., Kerkhoven, R.M., Bernards, R. and Beijersbergen, R.L. (2006) An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nat Chem Biol, 2, 202–206.PubMedCrossRefGoogle Scholar
  12. 12.
    Chanda, S.K., White, S., Orth, A.P., Reisdorph, R., Miraglia, L., Thomas, R.S., DeJesus, P., Mason, D.E., Huang, Q., Vega, R. et al. (2003) Genome-scale functional profiling of the mammalian AP-1 signaling pathway. Proc Natl Acad Sci U S A, 100, 12153–12158.PubMedCrossRefGoogle Scholar
  13. 13.
    Paddison, P.J., Silva, J.M., Conklin, D.S., Schlabach, M., Li, M., Aruleba, S., Balija, V., O’Shaughnessy, A., Gnoj, L., Scobie, K. et al. (2004) A resource for large-scale RNA-interference-based screens in mammals. Nature, 428, 427–431.PubMedCrossRefGoogle Scholar
  14. 14.
    Rines, D.R., Gomez-Ferreria, M.A., Zhou, Y., Dejesus, P., Grob, S., Batalov, S., Labow, M., Huesken, D., Mickanin, C., Hall, J. et al. (2008) Whole genome functional analysis identifies novel components required for mitotic spindle integrity in human cells. Genome Biol, 9, R44.PubMedCrossRefGoogle Scholar
  15. 15.
    Brummelkamp, T.R., Berns, K., Hijmans, E.M., Mullenders, J., Fabius, A., Heimerikx, M., Velds, A., Kerkhoven, R.M., Madiredjo, M., Bernards, R. et al. (2004) Functional identification of cancer-relevant genes through large-scale RNA interference screens in mammalian cells. Cold Spring Harb Symp Quant Biol, 69, 439–445.PubMedCrossRefGoogle Scholar
  16. 16.
    Brummelkamp, T.R., Nijman, S.M., Dirac, A.M. and Bernards, R. (2003) Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature, 424, 797–801.PubMedCrossRefGoogle Scholar
  17. 17.
    MacKeigan, J.P., Murphy, L.O. and Blenis, J. (2005) Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol, 7, 591–600.PubMedCrossRefGoogle Scholar
  18. 18.
    Schlabach, M.R., Luo, J., Solimini, N.L., Hu, G., Xu, Q., Li, M.Z., Zhao, Z., Smogorzewska, A., Sowa, M.E., Ang, X.L. et al. (2008) Cancer proliferation gene discovery through functional genomics. Science, 319, 620–624.PubMedCrossRefGoogle Scholar
  19. 19.
    Silva, J.M., Marran, K., Parker, J.S., Silva, J., Golding, M., Schlabach, M.R., Elledge, S.J., Hannon, G.J. and Chang, K. (2008) Profiling essential genes in human mammary cells by multiplex RNAi screening. Science, 319, 617–620.PubMedCrossRefGoogle Scholar
  20. 20.
    Iorns, E., Lord, C.J., Turner, N. and Ashworth, A. (2007) Utilizing RNA interference to enhance cancer drug discovery. Nat Rev Drug Discov, 6, 556–568.PubMedCrossRefGoogle Scholar
  21. 21.
    Whitehurst, A.W., Bodemann, B.O., Cardenas, J., Ferguson, D., Girard, L., Peyton, M., Minna, J.D., Michnoff, C., Hao, W., Roth, M.G. et al. (2007) Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature, 446, 815–819.PubMedCrossRefGoogle Scholar
  22. 22.
    Caldwell, J.S. (2007) Cancer cell-based genomic and small molecule screens. Adv Cancer Res, 96, 145–173.PubMedCrossRefGoogle Scholar
  23. 23.
    Echeverri, C.J., Beachy, P.A., Baum, B., Boutros, M., Buchholz, F., Chanda, S.K., Downward, J., Ellenberg, J., Fraser, A.G., Hacohen, N. et al. (2006) Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat Methods, 3, 777–779.PubMedCrossRefGoogle Scholar
  24. 24.
    Echeverri, C.J. and Perrimon, N. (2006) High-throughput RNAi screening in cultured cells: a user’s guide. Nat Rev Genet, 7, 373–384.PubMedCrossRefGoogle Scholar
  25. 25.
    Konig, R., Chiang, C.Y., Tu, B.P., Yan, S.F., DeJesus, P.D., Romero, A., Bergauer, T., Orth, A., Krueger, U., Zhou, Y. et al. (2007) A probability-based approach for the analysis of large-scale RNAi screens. Nat Methods, 4, 847–849.PubMedCrossRefGoogle Scholar
  26. 26.
    Perrimon, N., Friedman, A., Mathey-Prevot, B. and Eggert, U.S. (2007) Drug-target identification in Drosophila cells: combining high-throughout RNAi and small-molecule screens. Drug Discov Today, 12, 28–33.PubMedCrossRefGoogle Scholar
  27. 27.
    Draghici, S., Khatri, P., Tarca, A.L., Amin, K., Done, A., Voichita, C., Georgescu, C. and Romero, R. (2007) A systems biology approach for pathway level analysis. Genome Res, 17, 1537–1545.PubMedCrossRefGoogle Scholar
  28. 28.
    Draghici, S., Sellamuthu, S. and Khatri, P. (2006) Babel’s tower revisited: a universal resource for cross-referencing across annotation databases. Bioinformatics, 22, 2934–2939.PubMedCrossRefGoogle Scholar
  29. 29.
    Mount, D.W. and Pandey, R. (2005) Using bioinformatics and genome analysis for new therapeutic interventions. Mol Cancer Ther, 4, 1636–1643.PubMedCrossRefGoogle Scholar
  30. 30.
    Nikolsky, Y., Ekins, S., Nikolskaya, T. and Bugrim, A. (2005) A novel method for generation of signature networks as biomarkers from complex high throughput data. Toxicol Lett, 158, 20–29.PubMedCrossRefGoogle Scholar
  31. 31.
    Nikolsky, Y., Nikolskaya, T. and Bugrim, A. (2005) Biological networks and analysis of experimental data in drug discovery. Drug Discov Today, 10, 653–662.PubMedCrossRefGoogle Scholar
  32. 32.
    Dunn, D.A. (2002) Mining the human “kinome”. Drug Discov Today, 7, 1121–1123.PubMedCrossRefGoogle Scholar
  33. 33.
    Manning, G., Whyte, D.B., Martinez, R., Hunter, T. and Sudarsanam, S. (2002) The protein kinase complement of the human genome. Science, 298, 1912–1934.PubMedCrossRefGoogle Scholar
  34. 34.
    Hopkins, A.L. and Groom, C.R. (2002) The druggable genome. Nat Rev Drug Discov, 1, 727–730.PubMedCrossRefGoogle Scholar
  35. 35.
    Russ, A.P. and Lampel, S. (2005) The druggable genome: an update. Drug Discov Today, 10, 1607–1610.PubMedCrossRefGoogle Scholar
  36. 36.
    Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A, 95, 14863–14868.PubMedCrossRefGoogle Scholar
  37. 37.
    Ge, H., Liu, Z., Church, G.M. and Vidal, M. (2001) Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nat Genet, 29, 482–486.PubMedCrossRefGoogle Scholar
  38. 38.
    Jansen, R., Greenbaum, D. and Gerstein, M. (2002) Relating whole-genome expression data with protein-protein interactions. Genome Res, 12, 37–46.PubMedCrossRefGoogle Scholar
  39. 39.
    Kemmeren, P., van Berkum, N.L., Vilo, J., Bijma, T., Donders, R., Brazma, A. and Holstege, F.C. (2002) Protein interaction verification and functional annotation by integrated analysis of genome-scale data. Mol Cell, 9, 1133–1143.PubMedCrossRefGoogle Scholar
  40. 40.
    Lee, H.K., Hsu, A.K., Sajdak, J., Qin, J. and Pavlidis, P. (2004) Coexpression analysis of human genes across many microarray data sets. Genome Res, 14, 1085–1094.PubMedCrossRefGoogle Scholar
  41. 41.
    Obayashi, T., Hayashi, S., Shibaoka, M., Saeki, M., Ohta, H. and Kinoshita, K. (2008) COXPRESdb: a database of coexpressed gene networks in mammals. Nucleic Acids Res, 36, D77–D82.PubMedCrossRefGoogle Scholar
  42. 42.
    Chung, N., Zhang, X.D., Kreamer, A., Locco, L., Kuan, P.F., Bartz, S., Linsley, P.S., Ferrer, M. and Strulovici, B. (2008) Median absolute deviation to improve hit selection for genome-scale RNAi screens. J Biomol Screen, 13, 149–158.PubMedCrossRefGoogle Scholar
  43. 43.
    Fuchs, F. and Boutros, M. (2006) Cellular phenotyping by RNAi. Brief Funct Genomic Proteomic, 5, 52–56.PubMedCrossRefGoogle Scholar
  44. 44.
    Inglese, J., Shamu, C.E. and Guy, R.K. (2007) Reporting data from high-throughput screening of small-molecule libraries. Nat Chem Biol, 3, 438–441.PubMedCrossRefGoogle Scholar
  45. 45.
    Aerts, S., Lambrechts, D., Maity, S., Van Loo, P., Coessens, B., De Smet, F., Tranchevent, L.C., De Moor, B., Marynen, P., Hassan, B. et al. (2006) Gene prioritization through genomic data fusion. Nat Biotechnol, 24, 537–544.PubMedCrossRefGoogle Scholar
  46. 46.
    Chen, J., Xu, H., Aronow, B.J. and Jegga, A.G. (2007) Improved human disease candidate gene prioritization using mouse phenotype. BMC Bioinformatics, 8, 392.PubMedCrossRefGoogle Scholar
  47. 47.
    Friend, S.H. and Oliff, A. (1998) Emerging uses for genomic information in drug discovery. N Engl J Med, 338, 125–126.PubMedCrossRefGoogle Scholar
  48. 48.
    Hartwell, L.H., Szankasi, P., Roberts, C.J., Murray, A.W. and Friend, S.H. (1997) Integrating genetic approaches into the discovery of anticancer drugs. Science, 278, 1064–1068.PubMedCrossRefGoogle Scholar
  49. 49.
    Shoemaker, R.H. (2006) The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer, 6, 813–823.PubMedCrossRefGoogle Scholar
  50. 50.
    Weinstein, J.N. (2006) Spotlight on molecular profiling: “integromic” analysis of the NCI-60 cancer cell lines. Mol Cancer Ther, 5, 2601–2605.PubMedCrossRefGoogle Scholar
  51. 51.
    Bussey, K.J., Chin, K., Lababidi, S., Reimers, M., Reinhold, W.C., Kuo, W.L., Gwadry, F., Ajay, Kouros-Mehr, H., Fridlyand, J. et al. (2006) Integrating data on DNA copy number with gene expression levels and drug sensitivities in the NCI-60 cell line panel. Mol Cancer Ther, 5, 853–867.PubMedCrossRefGoogle Scholar
  52. 52.
    Scherf, U., Ross, D.T., Waltham, M., Smith, L.H., Lee, J.K., Tanabe, L., Kohn, K.W., Reinhold, W.C., Myers, T.G., Andrews, D.T. et al. (2000) A gene expression database for the molecular pharmacology of cancer. Nat Genet, 24, 236–244.PubMedCrossRefGoogle Scholar
  53. 53.
    Staunton, J.E., Slonim, D.K., Coller, H.A., Tamayo, P., Angelo, M.J., Park, J., Scherf, U., Lee, J.K., Reinhold, W.O., Weinstein, J.N. et al. (2001) Chemosensitivity prediction by transcriptional profiling. Proc Natl Acad Sci U S A, 98, 10787–10792.PubMedCrossRefGoogle Scholar
  54. 54.
    Zhou, Y., Young, J.A., Santrosyan, A., Chen, K., Yan, S.F. and Winzeler, E.A. (2005) In silico gene function prediction using ontology-based pattern identification. Bioinformatics, 21, 1237–1245.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jeff Kiefer
    • 1
  • Hongwei H. Yin
    • 1
  • Qiang Q. Que
    • 1
  • Spyro Mousses
    • 1
  1. 1.Pharmaceutical Genomics DivisionTranslational Genomics Research Institute (TGen)PhoenixUSA

Personalised recommendations