Skip to main content

Kinetic Modeling as a Tool to Integrate Multilevel Dynamic Experimental Data

Part of the Methods in Molecular Biology book series (MIMB,volume 563)

Abstract

The metabolic networks are the most well-studied biochemical systems, with an abundance of in vitro and in vivo data available for quantitative estimation of its kinetic parameters. In this chapter, we present our approach to developing mathematical description of metabolic pathways. The model-based integration of reaction kinetics and the utilization of different types of experimental data including temporal dependencies have been described in detail. Software package DBSolve7 which allows us to develop kinetic model of the biochemical system and integrate experimental data has been presented.

Key words

  • Kinetic modeling
  • metabolic pathways
  • DBSolve7
  • integration of experimental data

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-60761-175-2_11
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-1-60761-175-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 11.1.
Fig. 11.2.
Fig. 11.3.
Fig. 11.4.
Fig. 11.5.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Schaefer U, Boos W, Takors R, Weuster-Botz D (1999) Automated sampling device for monitoring intracellular metabolite dynamics. Anal Biochem 270: 88–96.

    PubMed  CrossRef  CAS  Google Scholar 

  2. Buchholz A, Takors R, Wandrey C (2001) Quantification of intracellular metabolites in Escherichia coli K12 using liquid chromatographic-electrospray ionization tandem mass spectrometric techniques. Anal Biochem 295: 129–137.

    PubMed  CrossRef  CAS  Google Scholar 

  3. Buchholz A, Hurlebaus J, Wandrey C, Takors R (2002) Metabolomics: quantification of intracellular metabolite dynamics. Biomol Eng 19: 5–15.

    PubMed  CrossRef  CAS  Google Scholar 

  4. Noble M, Sinha Y, Kolupaev A, Demin O, Earnshaw D, Tobin F, West J, Martin JD, Qiu C, Liu WS, DeWolf WE Jr, Tew D, Goryanin II (2006) The kinetic model of the shikimate pathway as a tool to optimize enzyme assays for high-throughput screening. Biotechnol Bioeng 95: 560–571.

    PubMed  CrossRef  CAS  Google Scholar 

  5. Moehren G, Markevic N, Demin OV, Kiyatkin A, Goryain I, Kholodenko BN (2002) Temperature dependence of the epidermal growth factor receptor signaling network can be accounted for by a kinetic model. Biochemistry 41: 306–320.

    PubMed  CrossRef  CAS  Google Scholar 

  6. Markevich NI, Moehren G, Demin OV, Kiyatkin A, Hoek JB, Kholodenko BN (2004) Signal processing at the Ras circuit: what shapes Ras activation patterns? Syst Biol (Stevenage). 1(1): 104–113.

    CrossRef  CAS  Google Scholar 

  7. Kholodenko BN, Demin OV, Moehren G, Hoek JB (1999) Quantification of short term signaling by the epidermal growth factor receptor. J Biol Chem 274(42): 30169–30181.

    PubMed  CrossRef  CAS  Google Scholar 

  8. Riznichenko GYu, Lebedeva GV, Demin OV, Belyaeva NE, Rubin AB (2000) Regulatory levels of photosynthetic processes. Biophysics (Moscow) 45: 452–460.

    CAS  Google Scholar 

  9. Lebedeva GV, Belyaeva NE, Riznichenko GYu, Rubin AB, Demin OV (2000) Kinetic model of photosystem II of high plants. J Phys Chem (Moscow) 74: 1897–1906.

    Google Scholar 

  10. Demin OV, Lebedeva GV, Kolupaev AG, Zobova EA, Plyusnina TYu, Lavrova AI, Dubinsky A, Goryacheva EA, Tobin F, Goryanin II (2004) Kinetic modelling as a modern technology to explore and modify living cells. In: Ciobanu G., Rozenberg, G. (Eds.): Modelling in Molecular Biology, Natural Computing Series, Berlin, Germany, Springer, pp. 59–103.

    Google Scholar 

  11. Rizzi M, Baltes M, Theobald U, Reuss M (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. Mathematical model. Biotechnol Bioeng 55: 592–608.

    PubMed  CrossRef  CAS  Google Scholar 

  12. Chassagnole C, Rais B, Quentin E, Fell DA, Mazat JP (2001) An integrated study of threonine-pathway enzyme kinetics in Escherichia coli. Biochem J 356: 415–423

    PubMed  CrossRef  CAS  Google Scholar 

  13. Rais B, Chassagnole C, Ltellier T, Fell DA, Mazat JP (2001) Threonine synthesis from aspartate in Escherichia coli cell-free extracts: pathway dynamics. Biochem J 356: 425–432.

    PubMed  CrossRef  CAS  Google Scholar 

  14. Chassagnole C, Fell DA, Rais B, Kudla B, Mazat JP (2001) Control of the threonine-synthesis pathway in Escherichia coli: a theoretical and experimental approach. Biochem J 356: 433–444.

    PubMed  CrossRef  CAS  Google Scholar 

  15. Bakker BM, Michels PA, Opperdoes FR, Westerhoff HV (1997) Glycolysis in bloodstream form Trypanosoma brucei can be understood in terms of the kinetics of the glycolytic enzymes. J Biol Chem 272(6): 3207–3215.

    PubMed  CrossRef  CAS  Google Scholar 

  16. Teusink B, Bakker BM, Westerhoff HV (1996) Control of frequency and amplitudes is shared by all enzymes in three models for yeast glycolytic oscillations. Biochim Biophys Acta 1275(3): 204–212.

    PubMed  CrossRef  Google Scholar 

  17. Westerhoff HV, Van Dam K (1987) Thermodynamics and Control of Biological Free-Energy Transduction, Elsevier Science Publishers B.V., Amsterdam.

    Google Scholar 

  18. Umbarger HE (1996) Escherichia coli and Salmonella: Cellular and Molecular Biology, ASM Press, Washington DC, pp. 442–4458.

    Google Scholar 

  19. Cornish-Bowden A (2001) Fundamentals of Enzyme Kinetic, Portland Press, Cambridge.

    Google Scholar 

  20. Selkov E, Basmanova S, Gaasterland T, Goryanin I, Gretchkin Y, Maltsev N, Nenashev V, Overbeek R, Panyushkina E, Pronevitch L, Yunis I (1996) The metabolic pathway collection from EMP: the enzymes and metabolic pathways database. Nucleic Acids Res 24: 26–28.

    PubMed  CrossRef  CAS  Google Scholar 

  21. Schomburg I, Chang A, Schomburg D (2002) BRENDA, enzyme data and metabolic information. Nucleic Acids Res 30: 47–49.

    PubMed  CrossRef  CAS  Google Scholar 

  22. Sauro HM (1993) SCAMP: a general-purpose simulator and metabolic control analysis program. Comp Appl Biosci 9: 441–450.

    PubMed  CAS  Google Scholar 

  23. Hucka M, Finney A, Sauro HM, Bolouri H (2003) Systems Biology Markup Language (SBML) Level 1: Structures and facilities for basic model definitions. Available via the World Wide Web at http://www.sbml.org.

  24. Goryanin I, Serdyuk K (1994) Automation of Modelling of Multienzyme Systems Using Databanks on Enzyme and Metabolic pathways (EMP). In: Proceedings of the IMACS Symposium on Mathematical Modelling. Austria, pp. 332–336.

    Google Scholar 

  25. Goryanin I (1996) NetSolve: integrated development environment software for metabolic and enzymatic systems modeling. In: Westerhoff HV., Snoep JL., Sluse FE., Wijker JE., Holodenko BN (Eds.): Biothermokinetics of the Living Cell, Amsterdam, The Netherlands, pp. 252–254.

    Google Scholar 

  26. Goryanin I, Hodgman TC, Selkov E (1999) DBSolve: mathematical simulation and analysis of cellular metabolism and regulation. Bioinformatics 15(9): 749–758.

    PubMed  CrossRef  CAS  Google Scholar 

  27. Gizzatkulov N, Klimov A, Lebedeva G, Demin O (2004) DBSolve7: new update version to develop and analyze models of complex biological systems. In: ISMB/ECCB Conference. Glasgow, Scotland, UK, 31 July–5 August 2004.

    Google Scholar 

  28. Cleland WW (1963) The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta 67: 104–137.

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mogilevskaya, E. et al. (2009). Kinetic Modeling as a Tool to Integrate Multilevel Dynamic Experimental Data. In: Nikolsky, Y., Bryant, J. (eds) Protein Networks and Pathway Analysis. Methods in Molecular Biology, vol 563. Humana Press. https://doi.org/10.1007/978-1-60761-175-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-175-2_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-174-5

  • Online ISBN: 978-1-60761-175-2

  • eBook Packages: Springer Protocols