Meiosis pp 263-277 | Cite as

Staging of Mouse Seminiferous Tubule Cross-Sections

  • Emad A. Ahmed
  • Dirk G. de Rooij
Part of the Methods in Molecular Biology book series (MIMB, volume 558)


Spermatogenesis is a cyclic process during which, within each epithelial area, various generations of germ cells undergo a series of developmental steps according to a fixed time schedule. The cycle of the seminiferous epithelium can be subdivided into stages. In the mouse, 12 such stages have been described that can be distinguished from one another by steps in spermatid development. The best way to recognize the stages in seminiferous tubule cross-sections is to use Bouin’s-fixed testes of normal mice and sections stained with the Periodic acid Schiff (PAS) technique and hematoxylin. Unfortunately, this is not always possible. Sometimes PAS staining cannot be used, such as when immunohistochemistry is carried out. Moreover, not all germ cell types may be present in some instances, as in young or mutant mice. We summarize here all stage-identifying criteria that can be used in the ideal situation as well as in hematoxylin-only stained sections and/or when germ cell types are missing.

Key words

Cycle of the seminiferous epithelium testis mouse spermatogenesis staging 


  1. 1.
    Leblond, C. P. and Clermont, Y. (1952) Definition of the stages of the cycle of the seminiferous epithelium in the rat. Ann. N.Y. Acad. Sci. 55, 548–573.PubMedCrossRefGoogle Scholar
  2. 2.
    Clermont, Y. and Perey, B. (1957) The stages of the cycle of the seminiferous epithelium of the rat: practical definitions in PA-Schiff-hematoxylin stained sections. Rev. Canad. Biol. 16, 451–462.PubMedGoogle Scholar
  3. 3.
    Oakberg, E. F. (1956) A description of spermiogenesis in the mouse and its use in analysis of the cycle of the seminiferous epithelium and germ cell renewal. Am. J. Anat. 99, 391–413.PubMedCrossRefGoogle Scholar
  4. 4.
    Hess, R. A. (1990) Quantitative and qualitative characteristics of the stages and transitions in the cycle of the rat seminiferous epithelium: light microscopic observations of perfusion-fixed and plastic-embedded testes. Biol. Reprod. 43, 525–542.PubMedCrossRefGoogle Scholar
  5. 5.
    Russell, L. D., Ettlin, R. A., Hikim, A. P. S., and Clegg, E. D. (1990) Histological and histopathological evaluation of the testis, Cache River Press, Clearwater, Fl. USA.Google Scholar
  6. 6.
    de Rooij, D. G. (1973) Spermatogonial stem cell renewal in the mouse. I. Normal situation. Cell Tissue Kinet. 6, 281–287.PubMedGoogle Scholar
  7. 7.
    Tegelenbosch, R. A. and de Rooij, D. G. (1993) A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat. Res. 290, 193–200.PubMedCrossRefGoogle Scholar
  8. 8.
    de Rooij, D. G. (2001) Proliferation and differentiation of spermatogonial stem cells. Reproduction 121, 347–354.PubMedCrossRefGoogle Scholar
  9. 9.
    Hamer, G., Gademan, I. S., Kal, H. B., and de Rooij, D. G. (2001) Role for c-Abl and p73 in the radiation response of male germ cells. Oncogene 20, 4298–4304.PubMedCrossRefGoogle Scholar
  10. 10.
    Hamer, G., Kal, H. B., Westphal, C. H., Ashley, T., and de Rooij, D. G. (2004) Ataxia telangiectasia mutated expression and activation in the testis. Biol. Reprod. 70, 1206–1212.PubMedCrossRefGoogle Scholar
  11. 11.
    de Vries, S. S., Baart, E. B., Dekker, M., Siezen, A., de Rooij, D. G., de Boer, P., and te Riele, H. (1999) Mouse MutS-like protein MSH5 is required for proper chromosome synapsis in male and female meiosis. Genes Dev. 13, 523–531.PubMedCrossRefGoogle Scholar
  12. 12.
    Barchi, M., Mahadevaiah, S., Di Giacomo, M., Baudat, F., de Rooij, D. G., Burgoyne, P. S., Jasin, M., and Keeney, S. (2005) Surveillance of different recombination defects in mouse spermatocytes yields distinct responses despite elimination at an identical developmental stage. Mol. Cell. Biol. 25, 7203–7215.PubMedCrossRefGoogle Scholar
  13. 13.
    Bolcun-Filas, E., Costa, Y., Speed, R., Taggart, M., Benavente, R., De Rooij, D. G., and Cooke, H. J. (2007) SYCE2 is required for synaptonemal complex assembly, double strand break repair, and homologous recombination. J. Cell. Biol. 176, 741–747.PubMedCrossRefGoogle Scholar
  14. 14.
    Ahmed, E. A., van der Vaart, A., Barten, A., Kal, H. B., Chen, J., Lou, Z., Minter-Dykhouse, K., Bartkova, J., Bartek, J., de Boer, P., and de Rooij, D. G. (2007) Differences in DNA double strand breaks repair in male germ cell types: Lessons learned from a differential expression of Mdc1 and 53BP1. DNA Repair (Amst) 6, 1243–1254.Google Scholar
  15. 15.
    Carmell, M. A., Girard, A., van de Kant, H. J., Bourc'his, D., Bestor, T. H., de Rooij, D. G., and Hannon, G. J. (2007) MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell 12, 503–514.PubMedCrossRefGoogle Scholar
  16. 16.
    Ashley, T., Westphal, C., Plug-de Maggio, A., and de Rooij, D. G. (2004) The mammalian mid-pachytene checkpoint: meiotic arrest in spermatocytes with a mutation in Atm alone or in combination with a Trp53 (p53) or Cdkn1a (p21/cip1) mutation. Cytogenet. Genome Res. 107, 256–262.PubMedCrossRefGoogle Scholar
  17. 17.
    de Rooij, D. G. (2003) Specific arrests of spermatogenesis in genetically modified and mutant mice. Cytogenet. Genome Res. 103, 267–276.PubMedCrossRefGoogle Scholar
  18. 18.
    Chiarini-Garcia, H. and Russell, L. D. (2001) High-resolution light microscopic characterization of mouse spermatogonia. Biol. Reprod. 65, 1170–1178.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Emad A. Ahmed
    • 1
  • Dirk G. de Rooij
    • 2
  1. 1.Department of EndocrinologyUtrecht UniversityUtrechtThe Netherlands
  2. 2.Department of EndocrinologyUtrecht University, and Center for Reproductive Medicine, Academic Medical CenterAmsterdamThe Netherlands

Personalised recommendations