Advertisement

In Situ Analysis of Cell Populations: Long-Term Label-Retaining Cells

  • Rodrigo Fernandez-Gonzalez
  • Irineu Illa-Bochaca
  • Dawne N. Shelton
  • Bryan E. Welm
  • Mary Helen Barcellos-Hoff
  • Carlos Ortiz-de-Solorzano
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 621)

Abstract

The mammary gland consists of an epithelial ductal tree embedded in a fat pad. Adult mammary epithelium has been demonstrated to have outstanding regenerative potential, consistent with the presence of resident, adult stem cells. However, there are currently no bona fide markers to identify these cells within their tissue context. Here, we introduce long-term label retention as a method to investigate the location of quiescent cells (a property attributed to adult stem cells) in situ. Long-term label retaining cells divide actively during tissue development and remain quiescent at homeostasis. These two properties have been attributed to adult stem cells. Therefore, label-retaining cells can be used to identify populations that contain stem cells. We describe the materials and methods necessary to identify and image mammary label-retaining cells, to carry out morphometric analysis on these cells and to map their distribution of the mammary epithelium. The morphometric and spatial analyses described here are generally applicable to any mammary cell populations, and will therefore be useful to characterize mammary stem cells once bona fide mammary stem cell markers become available.

Key words

Bromodeoxyuridine labeling Osmotic pump 3D reconstruction Nuclear morphology Spatial analysis 

Notes

Acknowledgments

This work was supported by a predoctoral fellowship to RFG from the Department of Defense Breast Cancer Research Program (DAMD 17-03-1-0594), grants from the same institution to COS (DAMD 17-00-1-0227 and DAMD 17-00-1-0306), a grant to BEW from the National Cancer Institute (CA 8424306) and a grant to MHBH funded by the National Institute of Environmental Health Sciences and the National Cancer Institute (U01 ES012801).

References

  1. 1.
    Chu EY, Hens J, Andl T, Kairo A, Yamaguchi TP, Brisken C, Glick A, Wysolmerski JJ, Millar SE (2004) Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis. Development 131:4819–4829CrossRefPubMedGoogle Scholar
  2. 2.
    Hennighausen L, Robinson GW (2001) Signaling pathways in mammary gland development. Dev Cell 1:467–475CrossRefPubMedGoogle Scholar
  3. 3.
    Smalley M, Ashworth A (2003) Stem cells and breast cancer: a field in transit. Nat Rev Cancer 3:832–844CrossRefPubMedGoogle Scholar
  4. 4.
    Adriance MC, Inman JL, Petersen OW, Bissell MJ (2005) Myoepithelial cells: good fences make good neighbors. Breast Cancer Res 7:190–197CrossRefPubMedGoogle Scholar
  5. 5.
    Savill NJ, Sherratt JA (2003) Control of epidermal stem cell clusters by Notch-mediated lateral induction. Dev Biol 258:141–153CrossRefPubMedGoogle Scholar
  6. 6.
    Morris RJ, Liu YP, Marles L, Yang ZX, Trempus C, Li SL, Lin JS, Sawicki JA, Cotsarelis G (2004) Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 22:411–417CrossRefPubMedGoogle Scholar
  7. 7.
    Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, Fuchs E (2004) Defining the epithelial stem cell niche in skin. Science 303:359–363CrossRefPubMedGoogle Scholar
  8. 8.
    Potten CS, Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110:1001–1020PubMedGoogle Scholar
  9. 9.
    Potten CS, Booth C, Tudor GL, Booth D, Brady G, Hurley P, Ashton G, Clarke R, Sakakibara S, Okano H (2003) Identification of a putative intestinal stem cell and early lineage marker; musashi-1. Differentiation 71:28–41CrossRefPubMedGoogle Scholar
  10. 10.
    Spradling A, Drummond-Barbosa D, Kai T (2001) Stem cells find their niche. Nature 414:98–104CrossRefPubMedGoogle Scholar
  11. 11.
    Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88CrossRefPubMedGoogle Scholar
  12. 12.
    Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, Li HYI, Eaves CJ (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439:993–997PubMedGoogle Scholar
  13. 13.
    Novaro V, Roskelley CD, Bissell MJ (2003) Collagen-IV and laminin-1 regulate estrogen receptor alpha expression and function in mouse mammary epithelial cells. J Cell Sci 116:2975–2986CrossRefPubMedGoogle Scholar
  14. 14.
    Liu BY, McDermott SP, Khwaja SS, Alexander CM (2004) The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci USA 101:4158–4163CrossRefPubMedGoogle Scholar
  15. 15.
    Asselin-Labat ML, Shackleton M, Stingl J, Vaillant F, Forrest NC, Eaves CJ, Visvader JE, Lindeman GJ (2006) Steroid hormone receptor status of mouse mammary stem cells. J Natl Cancer Inst 98:1011–1014CrossRefPubMedGoogle Scholar
  16. 16.
    Braun KM, Watt FM (2004) Epidermal label-retaining cells: Background and recent applications. J Invest Dermatol Symp Proc 9:196–201CrossRefGoogle Scholar
  17. 17.
    Tsujimura A, Koikawa Y, Salm S, Takao T, Coetzee S, Moscatelli D, Shapiro E, Lepor H, Sun TT, Wilson EL (2002) Proximal location of mouse prostate epithelial stem cells: a model of prostatic homeostasis. J Cell Biol 157:1257–1265CrossRefPubMedGoogle Scholar
  18. 18.
    Burger PE, Xiong X, Coetzee S, Salm SN, Moscatelli D, Goto K, Wilson EL (2005) Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue. Proc Natl Acad Sci USA 102:7180–7185CrossRefPubMedGoogle Scholar
  19. 19.
    Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y (2001) Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104:233–245CrossRefPubMedGoogle Scholar
  20. 20.
    Potten CS (2004) Keratinocyte stem cells, label-retaining cells and possible genome protection mechanisms. J Investig Dermatol Symp Proc 9:183–195CrossRefPubMedGoogle Scholar
  21. 21.
    Asselin-Labat ML, Sutherland KD, Barker H, Thomas R, Shackleton M, Forrest NC, Hartley L, Robb L, Grosveld FG, van der Wees J, Lindeman GJ, Visvader JE (2007) Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 9:201–209CrossRefPubMedGoogle Scholar
  22. 22.
    Clayton E, Doupe DP, Klein AM, Winton DJ, Simons BD, Jones PH (2007) A single type of progenitor cell maintains normal epidermis. Nature 446:185–189CrossRefPubMedGoogle Scholar
  23. 23.
    Smith GH (2005) Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands. Development 132:681–687CrossRefPubMedGoogle Scholar
  24. 24.
    Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA (2002) Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 245:42–56CrossRefPubMedGoogle Scholar
  25. 25.
    Blanpain C, Horsley V, Fuchs E (2007) Epithelial stem cells: turning over new leaves. Cell 128:445–458CrossRefPubMedGoogle Scholar
  26. 26.
    Fernandez-Gonzalez R, Barcellos-Hoff MH, Ortiz-de-Solorzano C (2005) A tool for the quantitative spatial analysis of complex cellular systems. IEEE T Image Process 14:1300–1313CrossRefGoogle Scholar
  27. 27.
    Potten CS, Owen G, Booth D (2002) Intestinal stem cells protect their genome by selective segregation of template DNA strands. J Cell Sci 115:2381–2388PubMedGoogle Scholar
  28. 28.
    Fernandez-Gonzalez R (2006) In: Bio-engineering, Vol. PhD, UC Berkeley/UC San Francisco, BerkeleyGoogle Scholar
  29. 29.
    Fernandez-Gonzalez R, Jones A, Garcia-Rodriguez E, Chen PY, Idica A, Lockett SJ, Barcellos-Hoff MH, Ortiz de Solorzano C (2002) System for combined three-dimensional morphological and molecular analysis of thick tissue specimens. Microsc Res Tech 59:522–530CrossRefPubMedGoogle Scholar
  30. 30.
    Arganda-Carreras I, Fernandez-Gonzalez R, Ortiz de Solorzano C (2004) In: Twentysixth annual international conference of the engineering in medicine and biology society, vol 1. San Francisco, CA, pp 1691–1694Google Scholar
  31. 31.
    Fernandez-Gonzalez R, Deschamps T, Idica A, Malladi R, Ortiz de Solorzano C (2004) Automatic segmentation of histological structure in mammary gland tissue sections. J Biomed Opt 9:444–453CrossRefPubMedGoogle Scholar
  32. 32.
    Chamberlain CE, Kraynov VS, Hahn KM (2000) Imaging spatiotemporal dynamics of Rac activation in vivo with FLAIR. Method Enzymol 325:389–400CrossRefGoogle Scholar
  33. 33.
    Zimmermann T (2005) Spectral imaging and linear unmixing in light microscopy. Adv Biochem Eng Biotechnol 95:245–265PubMedGoogle Scholar
  34. 34.
    Fernandez-Gonzalez R, Barcellos-Hoff MH, Ortiz de Solorzano C (2004) Quantitative image analysis in mammary gland biology. J Mammary Gland Biol Neoplasia 9:343–359CrossRefPubMedGoogle Scholar
  35. 35.
    Ortiz de Solorzano C, Rodriguez EG, Jones A, Pinkel D, Gray JW, Sudar D, Lockett SJ (1999) Segmentation of confocal microscope images of cell nuclei in thick tissue sections. J Microsc 193:212–226CrossRefPubMedGoogle Scholar
  36. 36.
    Wahlby C, Sintorn IM, Erlandsson F, Borgefors G, Bengtsson E (2004) Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections. J Microsc 215:67–76CrossRefPubMedGoogle Scholar
  37. 37.
    Sedgewick R (2003) Algorithms in Java, part 5: graph algorithms, Addison Wesley ProfessionalGoogle Scholar
  38. 38.
    Glantz SA (2005) Primer of biostatistics, McGraw-Hill Medical, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Rodrigo Fernandez-Gonzalez
    • 1
  • Irineu Illa-Bochaca
    • 2
  • Dawne N. Shelton
    • 3
  • Bryan E. Welm
    • 3
  • Mary Helen Barcellos-Hoff
    • 2
  • Carlos Ortiz-de-Solorzano
    • 4
  1. 1.Development Biology ProgramSloan-Kettering, Institute, Memorial Sloan-Kettering Cancer CenterNew YorkUSA
  2. 2.Langone School of MedicineNew York UniversityNew YorkUSA
  3. 3.Department of SurgeryUniversity of Utah, Huntsman Cancer InstituteSalt Lake CityUSA
  4. 4.Morphology and Imaging Group and Cancer Imaging Laboratory, Center for Applied Medical ResearchUniversity of NavarrePamplonaSpain

Personalised recommendations