Bacterial Genome Sequencing

  • Hervé Tettelin
  • Tamara Feldblyum
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 551)

Abstract

For over 30 yr, the Sanger method has been the standard for DNA sequencing. Instruments have been developed and improved over time to increase throughput, but they always relied on the same technology. Today, we are facing a revolution in DNA sequencing with many drastically different platforms that have become or will soon become available on the market. We review a number of sequencing technologies and provide examples of applications. We also discuss the impact genomics and new DNA sequencing approaches have had on various fields of biological research.

Key words

Bacteria diversity genome pathogen sequencing technology 

References

  1. 1.
    Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., et al (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512.PubMedCrossRefGoogle Scholar
  2. 2.
    Fonstein, M., and Haselkorn, R. (1995). Physical mapping of bacterial genomes. J. Bacteriol. 177, 3361–3369.PubMedGoogle Scholar
  3. 3.
    Frangeul, L., Nelson, K. E., Buchrieser, C., Danchin, A., Glaser, P., and Kunst, F. (1999). Cloning and assembly strategies in microbial genome projects. Microbiology 145, 2625–2634.PubMedGoogle Scholar
  4. 4.
    Delcher, A. L., Bratke, K. A., Powers, E. C., and Salzberg, S. L. (2007). Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23, 673–679.PubMedCrossRefGoogle Scholar
  5. 5.
    Besemer, J., and Borodovsky, M. (2005). GeneMark: Web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res. 33, 451–454.CrossRefGoogle Scholar
  6. 6.
    Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.PubMedCrossRefGoogle Scholar
  7. 7.
    Riley, M. (1993). Functions of the gene products of Escherichia coli. Microbiol. Rev. 57, 862–952.PubMedGoogle Scholar
  8. 8.
    Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et al (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29.Google Scholar
  9. 9.
    Bateman, A., Birney, E., Durbin, R., Eddy, S. R., Howe, K. L., and Sonnhammer, E. L. (2000). The Pfam protein families database. Nucleic Acids Res. 28, 263–266.PubMedCrossRefGoogle Scholar
  10. 10.
    Haft, D. H., Selengut, J. D., and White, O. (2003). The TIGRFAMs database of protein families. Nucleic Acids Res. 31, 371–373.PubMedCrossRefGoogle Scholar
  11. 11.
    Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen, J. A., et al (2004). Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74.PubMedCrossRefGoogle Scholar
  12. 12.
    Daniel, R. (2005). The metagenomics of soil. Nat. Rev. Microbiol. 3, 470–478.PubMedCrossRefGoogle Scholar
  13. 13.
    Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C. M., Knight, R., and Gordon, J. I. (2007). The human microbiome project. Nature 449, 804–810.PubMedCrossRefGoogle Scholar
  14. 14.
    Fox, J. A., McMillan, S., and Ouellette, B. F. (2007). Conducting research on the web: 2007 update for the bioinformatics links directory. Nucleic Acids Res. 35, 3–5.CrossRefGoogle Scholar
  15. 15.
    Sanger, F., and Coulson, A. R. (1975). A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 94, 441–448.PubMedCrossRefGoogle Scholar
  16. 16.
    Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U S A 74, 5463–5467.PubMedCrossRefGoogle Scholar
  17. 17.
    Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., et al (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380.PubMedGoogle Scholar
  18. 18.
    Ronaghi, M., Uhlen, M., and Nyren, P. (1998). A sequencing method based on real-time pyrophosphate. Science 281, 363–365.PubMedCrossRefGoogle Scholar
  19. 19.
    Kartalov, E. P., and Quake, S. R. (2004). Microfluidic device reads up to four consecutive base pairs in DNA sequencing-by-synthesis. Nucleic Acids Res. 32, 2873–2879.PubMedCrossRefGoogle Scholar
  20. 20.
    Goldberg, S. M., Johnson, J., Busam, D., Feldblyum, T., Ferriera, S., Friedman, R., et al (2006). A Sanger/pyrosequencing hybrid approach for the generation of high-quality draft assemblies of marine microbial genomes. Proc. Natl. Acad. Sci. U S A 103, 11240–11245.PubMedCrossRefGoogle Scholar
  21. 21.
    McCutcheon, J. P., and Moran, N. A. (2007). Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc. Natl. Acad. Sci. U S A 104, 19392–19397.PubMedCrossRefGoogle Scholar
  22. 22.
    Bennett, S. T., Barnes, C., Cox, A., Davies, L., and Brown, C. (2005). Toward the 1,000 dollars human genome. Pharmacogenomics 6, 373–382.PubMedCrossRefGoogle Scholar
  23. 23.
    Levene, M. J., Korlach, J., Turner, S. W., Foquet, M., Craighead, H. G., and Webb, W. W. (2003). Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686.PubMedCrossRefGoogle Scholar
  24. 24.
    Korlach, J., Marks, P. J., Cicero, R. L., Gray, J. J., Murphy, D. L., Roitman, D. B., et al (2008). Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures. Proc. Natl. Acad. Sci. U S A 105, 1176–1181.PubMedCrossRefGoogle Scholar
  25. 25.
    Korbel, J. O., Urban, A. E., Affourtit, J. P., Godwin, B., Grubert, F., Simons, J. F., et al (2007). Paired-end mapping reveals extensive structural variation in the human genome. Science 318, 420–426.PubMedCrossRefGoogle Scholar
  26. 26.
    Emrich, S. J., Barbazuk, W. B., Li, L., and Schnable, P. S. (2007). Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Res. 17, 69–73.PubMedCrossRefGoogle Scholar
  27. 27.
    Torres, T. T., Metta, M., Ottenwalder, B., and Schlotterer, C. (2008). Gene expression profiling by massively parallel sequencing. Genome Res. 18, 172–177.PubMedCrossRefGoogle Scholar
  28. 28.
    Hafner, M., Landgraf, P., Ludwig, J., Rice, A., Ojo, T., Lin, C., et al (2008). Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods 44, 3–12.PubMedCrossRefGoogle Scholar
  29. 29.
    Mardis, E. R. (2007). ChIP-seq: welcome to the new frontier. Nat. Methods 4, 613–614.PubMedCrossRefGoogle Scholar
  30. 30.
    Cokus, S. J., Feng, S., Zhang, X., Chen, Z., Merriman, B., Haudenschild, C. D., et al (2008). Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215–219.PubMedCrossRefGoogle Scholar
  31. 31.
    Schones, D. E., Cui, K., Cuddapah, S., Roh, T. Y., Barski, A., Wang, Z., et al (2008). Dynamic regulation of nucleosome positioning in the human genome. Cell 132, 887–898.PubMedCrossRefGoogle Scholar
  32. 32.
    Pop, M., and Salzberg, S. L. (2008). Bioinformatics challenges of new sequencing technology. Trends Genet. 24, 142–149.PubMedCrossRefGoogle Scholar
  33. 33.
    Fraser-Liggett, C. M. (2005). Insights on biology and evolution from microbial genome sequencing. Genome Res. 15, 1603–1610.PubMedCrossRefGoogle Scholar
  34. 34.
    Grifantini, R., Bartolini, E., Muzzi, A., Draghi, M., Frigimelica, E., Berger, J., et al (2002). Previously unrecognized vaccine candidates against group B meningococcus identified by DNA microarrays. Nat. Biotechnol. 20, 914–921.PubMedCrossRefGoogle Scholar
  35. 35.
    Pieper, R., Gatlin-Bunai, C. L., Mongodin, E. F., Parmar, P. P., Huang, S. T., Clark, D. J., et al (2006). Comparative proteomic analysis of Staphylococcus aureus strains with differences in resistance to the cell wall-targeting antibiotic vancomycin. Proteomics 6, 4246–4258.PubMedCrossRefGoogle Scholar
  36. 36.
    Oldiges, M., Lutz, S., Pflug, S., Schroer, K., Stein, N., and Wiendahl, C. (2007). Metabolomics: current state and evolving methodologies and tools. Appl. Microbiol. Biotechnol. 76, 495–511.PubMedCrossRefGoogle Scholar
  37. 37.
    Collura, V., and Boissy, G. (2007). From protein-protein complexes to interactomics. Subcell. Biochem. 43, 135–183.PubMedCrossRefGoogle Scholar
  38. 38.
    Kitano, H. (2002). Systems biology: a brief overview. Science 295, 1662–1664.PubMedCrossRefGoogle Scholar
  39. 39.
    Lartigue, C., Glass, J. I., Alperovich, N., Pieper, R., Parmar, P. P., Hutchison, C. A., 3rd, et al (2007). Genome transplantation in bacteria: changing one species to another. Science 317, 632–638.PubMedCrossRefGoogle Scholar
  40. 40.
    Gibson, D. G., Benders, G. A., Andrews-Pfannkoch, C., Denisova, E. A., Baden-Tillson, H., Zaveri, J., et al (2008). Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 1215–1220.PubMedCrossRefGoogle Scholar
  41. 41.
    Grabowski, M., Joachimiak, A., Otwinowski, Z., and Minor, W. (2007). Structural genomics: keeping up with expanding knowledge of the protein universe. Curr. Opin. Struct. Biol. 17, 347–353.PubMedCrossRefGoogle Scholar
  42. 42.
    Rappuoli, R., and Covacci, A. (2003). Reverse vaccinology and genomics. Science 302, 602.PubMedCrossRefGoogle Scholar
  43. 43.
    Tettelin, H., Saunders, N. J., Heidelberg, J., Jeffries, A. C., Nelson, K. E., Eisen, J. A., et al (2000). Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287, 1809–1815.PubMedCrossRefGoogle Scholar
  44. 44.
    Pizza, M., Scarlato, V., Masignani, V., Giuliani, M. M., Aricò, B., Comanducci, M., et al (2000). Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287, 1816–1820.PubMedCrossRefGoogle Scholar
  45. 45.
    Telford, J. L., Margarit, I., Maione, D., Masignani, V., Tettelin, H., Bensi, G.et al, (2004). Vaccines against pathogenic streptococci, in Genomics, Proteomics and Vaccines (Grandi, G. , ed.)., Wiley, London, pp. 205–222.Google Scholar
  46. 46.
    Goldschneider, I., Gotschlich, E. C., and Artenstein, M. S. (1969). Human immunity to the meningococcus. I. The role of humoral antibodies. J. Exp. Med. 129, 1307–1326.Google Scholar
  47. 47.
    Giuliani, M. M., Adu-Bobie, J., Comanducci, M., Aricò, B., Savino, S., Santini, L., et al (2006). A universal vaccine for serogroup B meningococcus. Proc. Natl. Acad. Sci. U S A 103, 10834–10839.PubMedCrossRefGoogle Scholar
  48. 48.
    Tettelin, H., Masignani, V., Cieslewicz, M. J., Donati, C., Medini, D., Ward, N. L., et al (2005). Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome.” Proc. Natl. Acad. Sci. U S A 102, 13950–13955.CrossRefGoogle Scholar
  49. 49.
    Medini, D., Donati, C., Tettelin, H., Masignani, V., and Rappuoli, R. (2005). The microbial pan-genome. Curr. Opin. Genet. Dev. 15, 589–594.PubMedCrossRefGoogle Scholar
  50. 50.
    Maione, D., Margarit, I., Rinaudo, C. D., Masignani, V., Mora, M., Scarselli, M., et al (2005). Identification of a universal Group B streptococcus vaccine by multiple genome screen. Science 309, 148–150.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hervé Tettelin
    • 1
  • Tamara Feldblyum
    • 1
  1. 1. Institute for Genome Sciences, Department of Microbiology and ImmunologyUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations