Mitosis pp 39-62 | Cite as

RNAi in Drosophila S2 Cells as a Tool for Studying Cell Cycle Progression

  • Mónica Bettencourt-Dias
  • Gohta Goshima
Part of the Methods in Molecular Biology book series (MIMB, volume 545)


Genetic studies on model organisms, particularly yeasts and Drosophila melanogaster, have proven powerful in identifying the cell cycle machinery and its regulatory mechanisms. In more recent years RNAi has been used in a variety of genome-wide screens and single molecule studies to elucidate the mechanisms of cell cycle progression. In Drosophila cultured cells, RNAi is extremely simple, and a strong effect can be observed by adding the dsRNA to the cultured cells, with few complications of off-target effects. Functions in cell cycle progression can be followed by a variety of assays. One of the advantages of these cells is that they allow high-resolution spatiotemporal observations to be made by microscopy, with no particular complexity in terms of media and temperature. Here we discuss protocols for RNAi in Drosophila S2 culture cells, followed by the study of mitotic progression, through immunocytochemistry, live imaging, and flow cytometry analysis.

Key words

Mitosis cell cycle RNAi Drosophila genomewide 



We would like to thank the fly community for all the available and shared reagents that were cited here. MBD and GG would like to acknowledge the Glover, the Vale, and the MBD labs for help in developing protocols and Inês Bento, Joana Lamego, Ana Rodrigues Martins, and Zita Carvalho Santos for critical reading of this chapter. Work in the MBD lab is sponsored by an EMBO Installation Grant, Fundação Calouste Gulbenkian, Fundação para a Ciência e Tecnologia, Crioestaminal, and Oeiras City Council. Work in the GG lab is sponsored by Special Coordination Funds for Promoting Science and Technology commissioned by the MEXT of Japan.


  1. 1.
    Clemens, J.C., Worby, C.A., Simonson-Leff, N., Muda, M., Maehama, T., Hemmings, B.A., and Dixon, J.E. (2000). Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl. Acad. Sci. USA 97, 6499–6503.PubMedCrossRefGoogle Scholar
  2. 2.
    Goshima, G., Wollman, R., Goodwin, S.S., Zhang, N., Scholey, J.M., Vale, R.D., and Stuurman, N. (2007). Genes required for mitotic spindle assembly in drosophila S2 cells. Science 316, 417–4121.PubMedCrossRefGoogle Scholar
  3. 3.
    Bettencourt-Dias, M., Giet, R., Sinka, R., Mazumdar, A., Lock, W.G., Balloux, F., Zafiropoulos, P.J., Yamaguchi, S., Winter, S., Carthew, R.W., Cooper, M., Jones, D., Frenz, L., and Glover, D.M. (2004). Genome-wide survey of protein kinases required for cell cycle progression. Nature 432, 980–987.PubMedCrossRefGoogle Scholar
  4. 4.
    Kiger, A., Baum, B., Jones, S., Jones, M., Coulson, A., Echeverri, C., and Perrimon, N. (2003). A functional genomic analysis of cell morphology using RNA interference. J. Biol. 2, 27.PubMedCrossRefGoogle Scholar
  5. 5.
    Boutros, M., Kiger, A.A., Armknecht, S., Kerr, K., Hild, M., Koch, B., Haas, S.A., Consortium, H.F., Paro, R., and Perrimon, N. (2004). Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303, 832–835.PubMedCrossRefGoogle Scholar
  6. 6.
    Bjorklund, M., Taipale, M., Varjosalo, M., Saharinen, J., Lahdenpera, J., and Taipale, J. (2006). Identification of pathways regulating cell size and cell-cycle progression by RNAi. Nature 439, 1009–1013.PubMedCrossRefGoogle Scholar
  7. 7.
    Echeverri, C.J., and Perrimon, N. (2006). High-throughput RNAi screening in cultured cells: a user’s guide. Nat. Rev. Genet. 7, 373–384.PubMedCrossRefGoogle Scholar
  8. 8.
    Debec, A., and Abbadie, C. (1989). The acentriolar state of the Drosophila cell lines 1182. Biol. Cell 67, 307–311.PubMedGoogle Scholar
  9. 9.
    Debec, A. (1978). Haploid cell cultures of Drosophila melanogaster. Nature 274, 255–256.PubMedCrossRefGoogle Scholar
  10. 10.
    Bettencourt-Dias, M., Sinka, R., Frenz, L., and Glover, D.M. (2004). RNAi in Drosophila cell cultures. In: M. Sohail, ed. Gene Silencing by RNA Interference: Technology and Application, CRC Press, Boca Ratan.Google Scholar
  11. 11.
    Schneider, I. (1972). Cell lines derived from late embryonic stages of Drosophila melanogaster. J. Embryol. Exp. Morphol. 27, 353–365.PubMedGoogle Scholar
  12. 12.
    Peel, D.J., Johnson, S.A., and Milner, M.J. (1990). The ultrastructure of imaginal disc cells in primary cultures and during cell aggregation in continuous cell lines. Tissue Cell 22, 749–758.PubMedCrossRefGoogle Scholar
  13. 13.
    Ui, K., Nishihara, S., Sakuma, M., Togashi, S., Ueda, R., Miyata, Y., and Miyake, T. (1994). Newly established cell lines from Drosophila larval CNS express neural specific characteristics. In Vitro Cell Dev. Biol. Anim. 30A, 209–216.PubMedCrossRefGoogle Scholar
  14. 14.
    Echalier, G. (1997). Drosophila Cells in Culture, Academic Press, New York, USA.Google Scholar
  15. 15.
    Ashburner, M. (1989). Drosophila. A Laboratory Handbook, Volume I, Cold Spring Harbor Laboratory Press, Cold Spring Harbor.Google Scholar
  16. 16.
    Goshima, G., and Vale, R.D. (2003). The roles of microtubule-based motor proteins in mitosis: comprehensive RNAi analysis in the Drosophila S2 cell line. J. Cell Biol. 162, 1003–1016.PubMedCrossRefGoogle Scholar
  17. 17.
    Bettencourt-Dias, M., Rodrigues-Martins, A., Carpenter, L., Riparbelli, M., Lehmann, L., Gatt, M.K., Carmo, N., Balloux, F., Callaini, G., and Glover, D.M. (2005). SAK/PLK4 is required for centriole duplication and flagella development. Curr. Biol. 15, 2199–2207.PubMedCrossRefGoogle Scholar
  18. 18.
    Yang, D., Lu, H., and Erickson, J.W. (2000). Evidence that processed small dsRNAs may mediate sequence-specific mRNA degradation during RNAi in Drosophila embryos. Curr. Biol. 10, 1191–1200.PubMedCrossRefGoogle Scholar
  19. 19.
    Goshima, G., and Vale, R.D. (2005). Cell cycle-dependent dynamics and regulation of mitotic kinesins in Drosophila S2 cells. Mol. Biol. Cell 16, 3896–3907.PubMedCrossRefGoogle Scholar
  20. 20.
    Roignant, J.Y., Carre, C., Mugat, B., Szymczak, D., Lepesant, J.A., and Antoniewski, C. (2003). Absence of transitive and systemic pathways allows cell-specific and isoform-specific RNAi in Drosophila. RNA 9, 299–308.PubMedCrossRefGoogle Scholar
  21. 21.
    Ma, Y., Creanga, A., Lum, L., and Beachy, P.A. (2006). Prevalence of off-target effects in Drosophila RNA interference screens. Nature 443, 359–363.PubMedCrossRefGoogle Scholar
  22. 22.
    Echeverri, C.J., Beachy, P.A., Baum, B., Boutros, M., Buchholz, F., Chanda, S.K., Downward, J., Ellenberg, J., Fraser, A.G., Hacohen, N., Hahn, W.C., Jackson, A.L., Kiger, A., Linsley, P.S., Lum, L., Ma, Y., Mathey-Prevot, B., Root, D.E., Sabatini, D.M., Taipale, J., Perrimon, N., and Bernards, R. (2006). Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat. Methods 3, 777–779.PubMedCrossRefGoogle Scholar
  23. 23.
    Lum, L., Yao, S., Mozer, B., Rovescalli, A., Von Kessler, D., Nirenberg, M., and Beachy, P.A. (2003). Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 299, 2039–2045.PubMedCrossRefGoogle Scholar
  24. 24.
    Rogers, S.L., Wiedemann, U., Stuurman, N., and Vale, R.D. (2003). Molecular requirements for actin-based lamella formation in Drosophila S2 cells. J. Cell Biol. 162, 1079–1088.PubMedCrossRefGoogle Scholar
  25. 25.
    Hannon, G.J. (2002). RNA interference. Nature 418, 244–251.PubMedCrossRefGoogle Scholar
  26. 26.
    Dykxhoorn, D.M., Novina, C.D., and Sharp, P.A. (2003). Killing the messenger: short RNAs that silence gene expression. Nat. Rev. Mol. Cell Biol. 4, 457–467.PubMedCrossRefGoogle Scholar
  27. 27.
    Hutvagner, G., and Zamore, P.D. (2002). RNAi: nature abhors a double-strand. Curr. Opin. Genet. Dev. 12, 225–232.PubMedCrossRefGoogle Scholar
  28. 28.
    Gonczy, P., Echeverri, C., Oegema, K., Coulson, A., Jones, S.J., Copley, R.R., Duperon, J., Oegema, J., Brehm, M., Cassin, E., Hannak, E., Kirkham, M., Pichler, S., Flohrs, K., Goessen, A., Leidel, S., Alleaume, A.M., Martin, C., Ozlu, N., Bork, P., and Hyman, A.A. (2000). Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408, 331–336.PubMedCrossRefGoogle Scholar
  29. 29.
    Rodrigues-Martins, A., Riparbelli, M., Callaini, G., Glover, D.M., and Bettencourt-Dias, M. (2007). Revisiting the role of the mother centriole in centriole biogenesis. Science 316, 1046–1050.PubMedCrossRefGoogle Scholar
  30. 30.
    Blower, M.D., and Karpen, G.H. (2001). The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nat. Cell Biol. 3, 730–739.PubMedCrossRefGoogle Scholar
  31. 31.
    Martinez-Campos, M., Basto, R., Baker, J., Kernan, M., and Raff, J.W. (2004). The Drosophila pericentrin-like protein is essential for cilia/flagella function, but appears to be dispensable for mitosis. J. Cell Biol. 165, 673–683.PubMedCrossRefGoogle Scholar
  32. 32.
    Megraw, T.L., Kao, L.R., and Kaufman, T.C. (2001). Zygotic development without functional mitotic centrosomes. Curr. Biol. 11, 116–120.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Mónica Bettencourt-Dias
    • 1
  • Gohta Goshima
    • 2
  1. 1.Cell Cycle Regulation LabInstituto Gulbenkian de CiênciaOeirasPortugal
  2. 2.Institute for Advanced ResearchNagoya UniversityNagoyaJapan

Personalised recommendations