Mitosis pp 271-285

Part of the Methods in Molecular Biology book series (MIMB, volume 545)

An In Vitro Assay for Cdc20-Dependent Mitotic Anaphase-Promoting Complex Activity from Budding Yeast

  • Scott C. Schuyler
  • Andrew W. Murray
Protocol

Abstract

Cell cycle transitions are controlled, in part, by ubiquitin-dependent proteolysis. In mitosis, the metaphase to anaphase transition is governed by an E3 ubiquitin ligase called the cyclosome or Anaphase-Promoting Complex (APC), and a WD40-repeat protein co-factor called Cdc20. In vitro Cdc20-dependent APC (APCCdc20) assays have been useful in the identification and validation of target substrates, and in the study of APC enzymology and regulation. Many aspects of the regulation of cell cycle progression have been discovered in the budding yeast Saccharomyces cerevisiae, and proteins purified from this model organism have been employed in a wide variety of in vitro assays. Here we outline a quantitative in vitro mitotic APCCdc20 assay that makes use of a highly active form of the APC that is purified from budding yeast cells arrested in mitosis.

Key words

Anaphase-promoting complex APC cyclosome mitosis Cdc20 anaphase metaphase Pds1 E3 ubiquitin ligase ubiquitin budding yeast saccharomyces cerevisiae 

References

  1. 1.
    Hershko A. (1999) Mechanisms and regulation of the degradation of cyclin B. Philos Trans R Soc Lond B Biol Sci. 354:1571–5; discussion 1575–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Musacchio A., Salmon E.D. (2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol. Cell. Biol. 8:379–93. Epub 2007 Apr 11.PubMedCrossRefGoogle Scholar
  3. 3.
    Zachariae W., Shin T.H., Galova M., Obermaier B., Nasmyth K. (1996) Identification of subunits of the anaphase-promoting complex of Saccharomyces cerevisiae. Science 274:1201–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Zachariae W., Shevchenko A., Andrews P.D., Ciosk R., Galova M., Stark M.J., Mann M., Nasmyth K. (1998) Mass spectrometric analysis of the anaphase-promoting complex from yeast: identification of a subunit related to cullins. Science. Feb 20;279(5354):1216–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Passmore L.A., Booth C.R., Vénien-Bryan C., Ludtke S.J., Fioretto C., Johnson L.N., Chiu W., Barford D. (2005) Structural analysis of the anaphase-promoting complex reveals multiple active sites and insights into polyubiquitylation. Mol. Cell. Dec 22;20 (6):855–66.PubMedCrossRefGoogle Scholar
  6. 6.
    Kraft C., Herzog F., Gieffers C., Mechtler K., Hagting A., Pines J., Peters J.M. (2003) Mitotic regulation of the human anaphase-promoting complex by phosphorylation. EMBO J. Dec 15;22 (24):6598–609.PubMedCrossRefGoogle Scholar
  7. 7.
    Herzog F., Mechtler K., Peters J.M. (2005) Identification of cell cycle-dependent phosphorylation sites on the anaphase-promoting complex/cyclosome by mass spectrometry. Methods Enzymol. 398:231–45.PubMedCrossRefGoogle Scholar
  8. 8.
    Rudner A.D., Murray A.W. (2000) Phosphorylation by Cdc28 activates the Cdc20-dependent activity of the anaphase-promoting complex. J. Cell Biol. Jun 26;149 (7):1377–90.PubMedCrossRefGoogle Scholar
  9. 9.
    Carroll C.W., Morgan D.O. (2002) The Doc1 subunit is a processivity factor for the anaphase-promoting complex. Nat. Cell Biol. Nov;4 (11):880–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Passmore L.A., McCormack E.A., Au S.W., Paul A., Willison K.R., Harper J.W., Barford D. (2003) Doc1 mediates the activity of the anaphase-promoting complex by contributing to substrate recognition. EMBO J. Feb 17;22 (4):786–96.PubMedCrossRefGoogle Scholar
  11. 11.
    Passmore L.A., Barford D., Harper J.W. (2005) Purification and assay of the budding yeast anaphase-promoting complex. Methods Enzymol. 398:195–219.PubMedCrossRefGoogle Scholar
  12. 12.
    Carroll C.W., Enquist-Newman M., Morgan D.O. (2005) The APC subunit Doc1 promotes recognition of the substrate destruction box. Curr. Biol. Jan 11;15 (1):11–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Carroll C.W., Morgan D.O. (2005) Enzymology of the anaphase-promoting complex. Methods Enzymol. 398:219–30.PubMedCrossRefGoogle Scholar
  14. 14.
    Rigaut G., Shevchenko A., Rutz B., Wilm M., Mann M., Séraphin B. (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. Oct;17(10):1030–2.PubMedCrossRefGoogle Scholar
  15. 15.
    Puig O., Caspary F., Rigaut G., Rutz B., Bouveret E., Bragado-Nilsson E., Wilm M., Séraphin B. (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods. 3:218–29.CrossRefGoogle Scholar
  16. 16.
    Rodrigo-Brenni M.C., Morgan D.O. (2007) Sequential E2s drive polyubiquitin chain assembly on APC targets. Cell. 130:127–39.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Scott C. Schuyler
    • 1
  • Andrew W. Murray
    • 1
  1. 1.Department of Molecular and Cellular BiologyHarvard UniversityCambridgeUSA

Personalised recommendations